On the exit time from open sets of some semi-Markov processes

In this paper we characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes. We estimate the asymptotic behaviour of the survival function (for large $t$) and of the distribution function (for small $t$) and we provide some conditions for absolute continuity. We have been inspired by a problem of neurophyshiology and our results are particularly usefull in this field, precisely for the so-called Leacky Integrate-and-Fire (LIF) models: the use of semi-Markov processes in these models appear to be realistic under several aspects, e.g., it makes the intertimes between spikes a r.v. with infinite expectation, which is a desiderable property. Hence, after the theoretical part, we provide a LIF model based on semi-Markov processes.

[1]  Bruno Toaldo Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C0-semigroups , 2013, 1308.1327.

[2]  M. Meerschaert,et al.  The Fractional Poisson Process and the Inverse Stable Subordinator , 2010, 1007.5051.

[3]  P. Patie,et al.  Extinction Time of Non-Markovian Self-Similar Processes, Persistence, Annihilation of Jumps and the Fréchet Distribution , 2018, Journal of Statistical Physics.

[4]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[5]  Luc Devroye,et al.  On simulation and properties of the stable law , 2014, Stat. Methods Appl..

[6]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[7]  L. Ricciardi,et al.  The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model , 2011 .

[8]  Wolfgang Maass,et al.  A Simple Model for Neural Computation with Firing Rates and Firing Correlations , 1998, Electron. Colloquium Comput. Complex..

[9]  E. Orsingher,et al.  Time-Inhomogeneous Jump Processes and Variable Order Operators , 2015, 1506.06893.

[10]  Ward Whitt,et al.  An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .

[11]  Maria Francesca Carfora,et al.  A leaky integrate-and-fire model with adaptation for the generation of a spike train. , 2016, Mathematical biosciences and engineering : MBE.

[12]  E. Orsingher,et al.  On semi-Markov processes and their Kolmogorov's integro-differential equations , 2017, Journal of Functional Analysis.

[13]  Laura Sacerdote,et al.  A first passage problem for a bivariate diffusion process: Numerical solution with an application to neuroscience when the process is Gauss-Markov , 2012, J. Comput. Appl. Math..

[14]  J. McFadden,et al.  Certain Properties of Gaussian Processes and Their First‐Passage Times , 1965 .

[15]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[16]  Federico Polito,et al.  Discussion on the paper “On simulation and properties of the stable law” by L. Devroye and L. James , 2014, Stat. Methods Appl..

[17]  R. H. Cannon,et al.  Dynamics of Physical Systems , 1967 .

[18]  M. Magdziarz,et al.  Asymptotic properties of Brownian motion delayed by inverse subordinators , 2013, 1311.6043.

[19]  A. G. Nobile,et al.  A computational approach to first-passage-time problems for Gauss–Markov processes , 2001 .

[20]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[21]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae (Second Edition) , 2003 .

[22]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 1 , 1967 .

[23]  M. S. Ridout,et al.  Generating random numbers from a distribution specified by its Laplace transform , 2009, Stat. Comput..

[24]  Mark M. Meerschaert,et al.  Triangular array limits for continuous time random walks , 2008 .

[25]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[26]  Lévy mixing related to distributed order calculus, subordinators and slow diffusions , 2014, 1406.4669.

[27]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[28]  Petr Lánský,et al.  A review of the methods for neuronal response latency estimation , 2015, Biosyst..

[29]  Samuel Herrmann,et al.  Exact Simulation of the First-Passage Time of Diffusions , 2017, Journal of Scientific Computing.

[30]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[31]  J. Doob Heuristic Approach to the Kolmogorov-Smirnov Theorems , 1949 .

[32]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[33]  J. Geluk Π-regular variation , 1981 .

[34]  Laura Sacerdote,et al.  First passage times of two-dimensional correlated processes: Analytical results for the Wiener process and a numerical method for diffusion processes , 2012, J. Comput. Appl. Math..

[35]  B. Mandelbrot,et al.  RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. , 1964, Biophysical journal.

[36]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[37]  Erhan Cinlar,et al.  Markov Additive Processes and Semi-Regeneration , 1974 .

[38]  E. Pirozzi,et al.  Successive spike times predicted by a stochastic neuronal model with a variable input signal. , 2016, Mathematical biosciences and engineering : MBE.

[39]  M. Meerschaert,et al.  Relaxation patterns and semi-Markov dynamics , 2015, Stochastic Processes and their Applications.

[40]  P Lánský,et al.  On approximations of Stein's neuronal model. , 1984, Journal of theoretical biology.

[41]  Enrica Pirozzi,et al.  Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing , 2018, Biological Cybernetics.

[42]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[43]  Vassili N. Kolokoltsov,et al.  Generalized Continuous-Time Random Walks (CTRW), Subordination by Hitting Times and Fractional Dynamics , 2007, 0706.1928.

[44]  Luc Devroye,et al.  On the computer generation of random variables with a given characteristic function , 1981 .

[45]  V. Kolokoltsov,et al.  Generalised fractional evolution equations of Caputo type , 2017, 1706.00319.

[46]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[47]  L. Ricciardi,et al.  The Ornstein-Uhlenbeck process as a model for neuronal activity , 1979, Biological Cybernetics.

[48]  Mark M. Meerschaert,et al.  Semi-Markov approach to continuous time random walk limit processes , 2012, 1206.1960.

[49]  On Continuity Properties of Infinitely Divisible Distribution Functions , 1968 .

[50]  Martin Hairer,et al.  A fractional kinetic process describing the intermediate time behaviour of cellular flows , 2016, The Annals of Probability.

[51]  Обобщенные случайные блуждания в непрерывном времени (CTRW), субординация временами достижения и дробная динамика@@@Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics , 2008 .

[52]  N. Bingham Limit theorems for occupation times of Markov processes , 1971 .

[53]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[54]  Enrico Scalas Five Years of Continuous-time Random Walks in Econophysics , 2005 .

[55]  Bruno Toaldo,et al.  Semi-Markov Models and Motion in Heterogeneous Media , 2017, 1705.02846.

[56]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[57]  Zhen-Qing Chen Time fractional equations and probabilistic representation , 2017, 1703.01739.

[58]  Lawrence M. Ward,et al.  Stochastic Neuron Models , 2016 .

[59]  Virginia Giorno,et al.  ON THE ASYMPTOTIC BEHAVIOUR OF FIRST- PASSAGE-TIME DENSITIES FOR ONE-DIMENSIONAL DIFFUSION PROCESSES AND VARYING BOUNDARIES , 1990 .