Statistical aspects of neural networks

[1]  Wray L. Buntine,et al.  Computing second derivatives in feed-forward networks: a review , 1994, IEEE Trans. Neural Networks.

[2]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[3]  Eduardo D. Sontag,et al.  Feedforward Nets for Interpolation and Classification , 1992, J. Comput. Syst. Sci..

[4]  Chris Bishop,et al.  Exact Calculation of the Hessian Matrix for the Multilayer Perceptron , 1992, Neural Computation.

[5]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[6]  Chee-Kit Looi,et al.  Neural network methods in combinatorial optimization , 1992, Comput. Oper. Res..

[7]  Anna Hart,et al.  Using Neural Networks for Classification Tasks – Some Experiments on Datasets and Practical Advice , 1992 .

[8]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[9]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[10]  Muni S. Srivastava,et al.  Regression Analysis: Theory, Methods, and Applications , 1991 .

[11]  Granino A. Korn,et al.  Neural network experiments on personal computers and workstations , 1991 .

[12]  Sholom M. Weiss,et al.  Reduced Complexity Rule Induction , 1991, IJCAI.

[13]  H. Sebastian Seung,et al.  Learning curves in large neural networks , 1991, COLT '91.

[14]  Eduardo D. Sontag,et al.  Feedback Stabilization Using Two-Hidden-Layer Nets , 1991, 1991 American Control Conference.

[15]  S. Ruiz-Velasco Asymptotic efficiency of logistic regression relative to linear discriminant analysis , 1991 .

[16]  Clifford Lau,et al.  Neural Networks: Theoretical Foundations and Analysis , 1991 .

[17]  David G. Lowe,et al.  Optimized Feature Extraction and the Bayes Decision in Feed-Forward Classifier Networks , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Thomas G. Dietterich,et al.  Readings in Machine Learning , 1991 .

[19]  D. Cox,et al.  Analysis of Binary Data (2nd ed.). , 1990 .

[20]  Ishwar K. Sethi,et al.  Entropy nets: from decision trees to neural networks , 1990, Proc. IEEE.

[21]  O. J. Murphy,et al.  Nearest neighbor pattern classification perceptrons , 1990, Proc. IEEE.

[22]  Terrence J. Sejnowski,et al.  SEXNET: A Neural Network Identifies Sex From Human Faces , 1990, NIPS.

[23]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[24]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[25]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[26]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[27]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[28]  Patrick M. Shea,et al.  Operational experience with a neural network in the detection of explosives in checked airline luggage , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[29]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.

[30]  G. Wahba Spline Models for Observational Data , 1990 .

[31]  Esther Levin,et al.  A statistical approach to learning and generalization in layered neural networks , 1989, Proc. IEEE.

[32]  Tomaso A. Poggio,et al.  Representation Properties of Networks: Kolmogorov's Theorem Is Irrelevant , 1989, Neural Computation.

[33]  Robert J. Marks,et al.  A performance comparison of trained multilayer perceptrons and trained classification trees , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[34]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[35]  Raymond J. Mooney,et al.  An Experimental Comparison of Symbolic and Connectionist Learning Algorithms , 1989, IJCAI.

[36]  Douglas H. Fisher,et al.  An Empirical Comparison of ID3 and Back-propagation , 1989, IJCAI.

[37]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[38]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[39]  J. Slawny,et al.  Back propagation fails to separate where perceptrons succeed , 1989 .

[40]  Francis Crick,et al.  The recent excitement about neural networks , 1989, Nature.

[41]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[42]  D. G. Watts,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[43]  H. White,et al.  Economic prediction using neural networks: the case of IBM daily stock returns , 1988, IEEE 1988 International Conference on Neural Networks.

[44]  T. Kohonen,et al.  Statistical pattern recognition with neural networks: benchmarking studies , 1988, IEEE 1988 International Conference on Neural Networks.

[45]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[46]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[47]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[48]  Marvin Minsky,et al.  Perceptrons: expanded edition , 1988 .

[49]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[50]  Chris Carter,et al.  Assessing Credit Card Applications Using Machine Learning , 1987, IEEE Expert.

[51]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[52]  B. Gold,et al.  A Comparison of Hamming and Hopfield Neural Nets for Pattern Classification , 1987 .

[53]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[54]  J. Friedman Exploratory Projection Pursuit , 1987 .

[55]  John Mingers,et al.  Expert Systems—Experiments with Rule Induction , 1986 .

[56]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[57]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[58]  J. L. Hemmen,et al.  Nonlinear neural networks. , 1986, Physical review letters.

[59]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[60]  R. Tibshirani,et al.  Generalized additive models for medical research , 1995, Statistical methods in medical research.

[61]  E. Ruiz An algorithm for finding nearest neighbours in (approximately) constant average time , 1986 .

[62]  James L. McClelland,et al.  Parallel Distributed Processing: Explorations in the Microstructure of Cognition : Psychological and Biological Models , 1986 .

[63]  John J. Hopfield,et al.  Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit , 1986 .

[64]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[65]  Sompolinsky,et al.  Storing infinite numbers of patterns in a spin-glass model of neural networks. , 1985, Physical review letters.

[66]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[67]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[69]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[70]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[72]  Philip E. Gill,et al.  Practical optimization , 1981 .

[73]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[74]  C. Han Alternative Methods of Estimating the Likelihood Ratio in Classification of Multivariate Normal Observations , 1979 .

[75]  A P Dawid,et al.  Properties of diagnostic data distributions. , 1976, Biometrics.

[76]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[77]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[78]  B. Efron The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis , 1975 .

[79]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[80]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[81]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[82]  D. Sprecher On the structure of continuous functions of several variables , 1965 .

[83]  J. Morgan,et al.  Problems in the Analysis of Survey Data, and a Proposal , 1963 .

[84]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[85]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[86]  B. Ripley Classification and Clustering in Spatial and Image Data , 1992 .

[87]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[88]  Anil K. Jain,et al.  Small sample size problems in designing artificial neural networks , 1991 .

[89]  Anil K. Jain,et al.  Artificial neural networks and statistical pattern recognition : old and new connections , 1991 .

[90]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[91]  Paul J. Werbos,et al.  Links Between Artificial Neural Networks (ANN) and Statistical Pattern Recognition , 1991 .

[92]  Christopher M. Bishop,et al.  A Fast Procedure for Retraining the Multilayer Perceptron , 1991, Int. J. Neural Syst..

[93]  Wray L. Buntine,et al.  Bayesian Back-Propagation , 1991, Complex Syst..

[94]  S. Gelfand,et al.  On Tree Structured Classifiers , 1991 .

[95]  Ishwar K. Sethi,et al.  Decision tree performance enhancement using an artificial neural network implementation1 1This work was supported in part by NSF grant IRI-9002087 , 1991 .

[96]  Barak A. Pearlmutter,et al.  Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian Discriminant Function , 1991 .

[97]  James A. Anderson,et al.  Neurocomputing (vol. 2): directions for research , 1990 .

[98]  Efraim Turban,et al.  Investment management: Decision support and expert systems , 1990 .

[99]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[100]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[101]  Eduardo D. Sontag,et al.  Backpropagation Can Give Rise to Spurious Local Minima Even for Networks without Hidden Layers , 1989, Complex Syst..

[102]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[103]  R. Hecht-Nielsen,et al.  Back propagation error surfaces can have local minima , 1989, International 1989 Joint Conference on Neural Networks.

[104]  B. Ripley,et al.  Using spatial models as priors in astronomical image analysis , 1989 .

[105]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[106]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[107]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[108]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[109]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[110]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[111]  Alen D. Shapiro,et al.  Structured induction in expert systems , 1987 .

[112]  John Mingers,et al.  Expert Systems—Rule Induction with Statistical Data , 1987 .

[113]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[114]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[115]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[116]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[117]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[118]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[119]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[120]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[121]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[122]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[123]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[124]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[125]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[126]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .