Optimizing CALIPSO Saharan dust retrievals

Abstract. We demonstrate improvements in CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) dust extinction retrievals over northern Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of the dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and collocated AERONET (Aerosol Robotic Network) measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS (Moderate-Resolution Imaging Spectroradiometer) collocated aerosol optical depth (AOD) product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1) by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an averaging scheme that includes zero extinction values for the nondust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and collocated dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per subregion examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model makes this dataset an ideal candidate for the provision of an accurate and robust multiyear dust climatology over northern Africa and Europe.

[1]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[2]  Kathleen A. Powell,et al.  CALIOP and AERONET aerosol optical depth comparisons: One size fits none , 2013 .

[3]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[4]  A. Ansmann,et al.  Ground‐based validation of CALIPSO observations of dust and smoke in the Cape Verde region , 2013 .

[5]  David M. Winker,et al.  The global 3-D distribution of tropospheric aerosols as characterized by CALIOP , 2012 .

[6]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[7]  J. Baldasano,et al.  Ground-, satellite- and simulation-based analysis of a strong dust event over Abastumani, Georgia, during May 2009 , 2012 .

[8]  C. Pérez García-Pando,et al.  Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East , 2012 .

[9]  Jens Redemann,et al.  The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth , 2011 .

[10]  B. Holben,et al.  An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study , 2011 .

[11]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[12]  Sara Basart,et al.  A full year evaluation of the CALIOPE-EU air quality modeling system over Europe for 2004 , 2010 .

[13]  Albert Ansmann,et al.  Size matters: Influence of multiple scattering on CALIPSO light‐extinction profiling in desert dust , 2010 .

[14]  V. Freudenthaler,et al.  EARLINET correlative measurements for CALIPSO: First intercomparison results , 2010 .

[15]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[16]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[17]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[18]  Sara Basart,et al.  The Potential of the Synergistic Use of Passive and Active Remote Sensing Measurements for the Validation of a Regional Dust Model , 2009 .

[19]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[20]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[21]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[22]  J. Baldasano,et al.  Regional dust model performance during SAMUM 2006 , 2009, Geophysical Research Letters.

[23]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[24]  Albert Ansmann,et al.  Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM , 2009 .

[25]  Ilan Koren,et al.  Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad , 2008 .

[26]  Albert Ansmann,et al.  Ten years of multiwavelength Raman lidar observations of free-tropospheric aerosol layers over central Europe : Geometrical properties and annual cycle , 2008 .

[27]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[28]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[29]  David M. Winker,et al.  CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long‐range transport , 2008 .

[30]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[31]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[32]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[33]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[34]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[35]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[36]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[37]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[38]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[39]  Nobuo Sugimoto,et al.  Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia , 2004 .

[40]  C. Zerefos,et al.  Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece , 2004 .

[41]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[42]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[43]  Teruyuki Nakajima,et al.  Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai , 2002 .

[44]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[45]  B. Holben,et al.  Validation of MODIS aerosol retrieval over ocean , 2002 .

[46]  A. Ansmann,et al.  Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .

[47]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[48]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[49]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[50]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[51]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[52]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[53]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .