Regionally influential users in location-aware social networks

The ubiquity of mobile location aware devices and the proliferation of social networks have given rise to Location-Aware Social Networks (LASN), where users form social connections and make geo-referenced posts. The goal of this paper is to identify users that can influence a large number of important other users, within a given spatial region. Returning a ranked list of regionally influential LASN users is useful in viral marketing and in other per-region analytical scenarios. We show that under a general influence propagation model, the problem is #P-hard, while it becomes solvable in polynomial time in a more restricted model. Under the more restrictive model, we then show that the problem can be translated to computing a variant of the so-called closeness centrality of users in the social network, and devise an evaluation method.

[1]  Huan Liu,et al.  Exploring Social-Historical Ties on Location-Based Social Networks , 2012, ICWSM.

[2]  Christian Böhm,et al.  Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases , 2001, CSUR.

[3]  Alex Bavelas,et al.  Communication Patterns in Task‐Oriented Groups , 1950 .

[4]  Nikos Mamoulis,et al.  Scalable skyline computation using object-based space partitioning , 2009, SIGMOD Conference.

[5]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[6]  Bin Liu,et al.  ZINC: Efficient Indexing for Skyline Computation , 2010, Proc. VLDB Endow..

[7]  Alan G. Labouseur,et al.  Efficient top-k closeness centrality search , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[8]  Huan Liu,et al.  gSCorr: modeling geo-social correlations for new check-ins on location-based social networks , 2012, CIKM.

[9]  C. Won,et al.  Efficient Use of MPEG‐7 Edge Histogram Descriptor , 2002 .

[10]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[11]  Jarek Gryz,et al.  Algorithms and analyses for maximal vector computation , 2007, The VLDB Journal.

[12]  Yufei Tao,et al.  Worst-Case I/O-Efficient Skyline Algorithms , 2012, TODS.

[13]  Beng Chin Ooi,et al.  Efficient Progressive Skyline Computation , 2001, VLDB.

[14]  Jayant R. Haritsa,et al.  Providing Diversity in K-Nearest Neighbor Query Results , 2003, PAKDD.

[15]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[16]  PapadiasDimitris,et al.  Aggregate nearest neighbor queries in spatial databases , 2005 .

[17]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[18]  Donald Kossmann,et al.  Shooting Stars in the Sky: An Online Algorithm for Skyline Queries , 2002, VLDB.

[19]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[20]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[21]  Jan Chomicki,et al.  Skyline with presorting , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[22]  Ashwin Lall,et al.  Randomized Multi-pass Streaming Skyline Algorithms , 2009, Proc. VLDB Endow..

[23]  Seung-won Hwang,et al.  BSkyTree: scalable skyline computation using a balanced pivot selection , 2010, EDBT '10.

[24]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[25]  Wei Chen,et al.  Scalable influence maximization for independent cascade model in large-scale social networks , 2012, Data Mining and Knowledge Discovery.

[26]  Masatoshi Yoshikawa,et al.  The A-tree: An Index Structure for High-Dimensional Spaces Using Relative Approximation , 2000, VLDB.

[27]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[28]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[29]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[30]  Hanan Samet,et al.  Distance browsing in spatial databases , 1999, TODS.

[31]  Jignesh M. Patel,et al.  Efficient Skyline Computation over Low-Cardinality Domains , 2007, VLDB.

[32]  Kian-Lee Tan,et al.  Efficient location-aware influence maximization , 2014, SIGMOD Conference.

[33]  Masaru Kitsuregawa,et al.  Skyline Operator on Anti-correlated Distributions , 2013, Proc. VLDB Endow..

[34]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[35]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[36]  Evaggelia Pitoura,et al.  DisC diversity: result diversification based on dissimilarity and coverage , 2012, Proc. VLDB Endow..

[37]  Bernhard Seeger,et al.  Progressive skyline computation in database systems , 2005, TODS.

[38]  Ken C. K. Lee,et al.  Approaching the Skyline in Z Order , 2007, VLDB.

[39]  Ilaria Bartolini,et al.  Efficient sort-based skyline evaluation , 2008, TODS.