A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization

Abstract We consider a generalized semi-infinite programming problem (GSIP) with one semi-infinite constraint where the index set depends on the variable to be minimized. Keeping in mind the integral global optimization method of Zheng and Chew and its modifications we would like to outline theoretical considerations for determining coarse approximations of a solution of (GSIP) via global optimization of an exact discontinuous penalty approach. We consider an auxiliary parametric semi-infinite programming problem and the behavior of its marginal functional. In so doing we extend the theory of robust analysis to study robustness of marginal functions and robustness of set valued mappings with given structures.

[1]  Georg J. Still,et al.  Generalized semi-infinite programming: numerical aspects , 2001 .

[2]  J. Aubin,et al.  Existence of Solutions to Differential Inclusions , 1984 .

[3]  Gerhard-Wilhelm Weber,et al.  Generalized semi-infinite optimization: On some foundations , 1999 .

[4]  Quan Zheng,et al.  Set-Valued Robust Mappings and Approximatable Mappings , 1994 .

[5]  Hubertus Th. Jongen,et al.  Generalized semi-infinite optimization: A first order optimality condition and examples , 1998, Math. Program..

[6]  Gerhard-Wilhelm Weber,et al.  Generalized semi-infinite optimization and related topics , 1999 .

[7]  Hoang Xuan Phu,et al.  Essential supremum and supremum of summable functions , 1996 .

[8]  Oliver Stein,et al.  On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..

[9]  Quan Zheng,et al.  Discontinuous robust mappings are approximatable , 1995 .

[10]  G. Still,et al.  Second order optimality conditions for generalized semi-infinite programming problems , 1995 .

[11]  Alexander Shapiro,et al.  First-Order Optimality Conditions in Generalized Semi-Infinite Programming , 1999 .

[12]  J. Aubin Set-valued analysis , 1990 .

[13]  Oliver Stein,et al.  On Linear and Linearized Generalized Semi-Infinite Optimization Problems , 2001, Ann. Oper. Res..

[14]  Marc Lassonde,et al.  Approximation, optimization and mathematical economics , 2001 .

[15]  René Henrion,et al.  Regularity and Stability in Nonlinear Semi-Infinite Optimization , 1998 .

[16]  Liansheng Zhang,et al.  Global minimization of constrained problems with discontinuous penalty functions , 1999 .

[17]  G. Still,et al.  On Optimality Conditions for Generalized Semi-Infinite Programming Problems , 2000 .

[18]  Georg Still,et al.  Generalized semi-infinite programming: Theory and methods , 1999, Eur. J. Oper. Res..

[19]  Related Topics,et al.  Parametric Optimization and Related Topics V , 1987 .

[20]  G. W. Weber,et al.  AN ALGORITHMIC APPROACH BY LINEAR PROGRAMMING PROBLEMS IN GENERALIZED SEMI-INFINITE OPTIMIZATION ¤ , 2000 .

[21]  Armin Hoffmann,et al.  A primal-dual integral method in global optimization , 2000 .

[22]  Oliver Stein The Feasible Set in Generalized Semi-Infinite Optimization , 2001 .

[23]  Armin Hoffmann,et al.  Convergence Speed of an Integral Method for Computing the Essential Supremum , 1997 .

[24]  Quan Zheng Integral Global Optimization of Robust Discontinuous Functions , 1992 .

[25]  Tibor Csendes,et al.  Developments in Global Optimization , 1997 .

[26]  Alexander Shapiro,et al.  Second-Order Optimality Conditions in Generalized Semi-Infinite Programming , 2001 .

[27]  Rainer Tichatschke,et al.  A Branch-and-Bound Approach for Solving a Class of Generalized Semi-infinite Programming Problems , 1998, J. Glob. Optim..

[28]  Oliver Stein On level sets of marginal functions , 2000 .

[29]  G. Weber,et al.  Generalized semi-infinite optimization : theory and applications in optimal control and discrete optimization , 2002 .

[30]  Quan Zheng,et al.  Integral Global Optimization , 1988 .