Efficient Multiplier Architectures for Galois Fields GF(2 4n)
暂无分享,去创建一个
[1] Edoardo D. Mastrovito,et al. VLSI Designs for Multiplication over Finite Fields GF (2m) , 1988, AAECC.
[2] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[3] Trieu-Kien Truong,et al. VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.
[4] M. A. Hasan,et al. Efficient architectures for computations over variable dimensional Galois fields , 1998 .
[5] Vijay K. Bhargava,et al. Efficient computations in galois fields , 1992 .
[6] Rudolf Lide,et al. Finite fields , 1983 .
[7] Vijay K. Bhargava,et al. Division and bit-serial multiplication over GF(qm) , 1992 .
[8] Yongjin Jeong. VLSI algorithms and architectures for real-time computation over finite fields , 1995 .
[9] Toshiya Itoh,et al. Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..
[10] Mohammed Benaissa,et al. GF(2^m) Multiplication and Division Over the Dual Basis , 1996, IEEE Trans. Computers.
[11] T J FennSebastian,et al. GF(2m) Multiplication and Division Over the Dual Basis , 1996 .
[12] Trieu-Kien Truong,et al. A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases , 1988, IEEE Trans. Computers.
[13] Christof Paar,et al. A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.
[14] Anatolij A. Karatsuba,et al. Multiplication of Multidigit Numbers on Automata , 1963 .
[15] FieldMultipliersChristof Paar. A Comparative VLSI Synthesis of Finite , 1995 .
[16] Willi Geiselmann. Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in endlichen Körpern , 1993 .
[17] D. H. Green,et al. Irreducible polynomials over composite Galois fields and their applications in coding techniques , 1974 .
[18] Vijay K. Bhargava,et al. Bit-Serial Systolic Divider and Multiplier for Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.
[19] Vijay K. Bhargava,et al. Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.
[20] Dingyi Pei,et al. A VLSI DEsign for Computing Exponentiations in GF(2^m) and Its Application to Generate Pseudorandom Number Sequences , 1990, IEEE Trans. Computers.
[21] Antonio Pincin. A New Algorithm for Multiplication in Finite Fields , 1989, IEEE Trans. Computers.
[22] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[23] Christof Paar,et al. Optimized arithmetic for Reed-Solomon encoders , 1997, Proceedings of IEEE International Symposium on Information Theory.
[24] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[25] Stafford E. Tavares,et al. A Fast VLSI Multiplier for GF(2m) , 1986, IEEE J. Sel. Areas Commun..
[26] Stephen B. Wicker,et al. Reed-Solomon Codes and Their Applications , 1999 .
[27] A. Menezes,et al. Applications of Finite Fields , 1992 .
[28] Allan O. Steinhardt,et al. Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.