Efficient Multiplier Architectures for Galois Fields GF(2 4n)

This contribution introduces a new class of multipliers for finite fields GF((2/sup n/)/sup 4/). The architecture is based on a modified version of the Karatsuba-Ofman algorithm (KOA). By determining optimized field polynomials of degree four, the last stage of the KOA and the module reduction can be combined. This saves computation and area in VLSI implementations. The new algorithm leads to architectures which show a considerably improved gate complexity compared to traditional approaches and reduced delay if compared with KOA-based architectures with separate module reduction. The new multipliers lead to highly modular architectures and are, thus, well suited for VLSI implementations. Three types of field polynomials are introduced and conditions for their existence are established. For the small fields, where n=2,3,...,8, which are of primary technical interest, optimized field polynomials were determined by an exhaustive search. For each field order, exact space and time complexities are provided.

[1]  Edoardo D. Mastrovito,et al.  VLSI Designs for Multiplication over Finite Fields GF (2m) , 1988, AAECC.

[2]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[3]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[4]  M. A. Hasan,et al.  Efficient architectures for computations over variable dimensional Galois fields , 1998 .

[5]  Vijay K. Bhargava,et al.  Efficient computations in galois fields , 1992 .

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Vijay K. Bhargava,et al.  Division and bit-serial multiplication over GF(qm) , 1992 .

[8]  Yongjin Jeong VLSI algorithms and architectures for real-time computation over finite fields , 1995 .

[9]  Toshiya Itoh,et al.  Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..

[10]  Mohammed Benaissa,et al.  GF(2^m) Multiplication and Division Over the Dual Basis , 1996, IEEE Trans. Computers.

[11]  T J FennSebastian,et al.  GF(2m) Multiplication and Division Over the Dual Basis , 1996 .

[12]  Trieu-Kien Truong,et al.  A Comparison of VLSI Architecture of Finite Field Multipliers Using Dual, Normal, or Standard Bases , 1988, IEEE Trans. Computers.

[13]  Christof Paar,et al.  A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.

[14]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[15]  FieldMultipliersChristof Paar A Comparative VLSI Synthesis of Finite , 1995 .

[16]  Willi Geiselmann Algebraische Algorithmenentwicklung am Beispiel der Arithmetik in endlichen Körpern , 1993 .

[17]  D. H. Green,et al.  Irreducible polynomials over composite Galois fields and their applications in coding techniques , 1974 .

[18]  Vijay K. Bhargava,et al.  Bit-Serial Systolic Divider and Multiplier for Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.

[19]  Vijay K. Bhargava,et al.  Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.

[20]  Dingyi Pei,et al.  A VLSI DEsign for Computing Exponentiations in GF(2^m) and Its Application to Generate Pseudorandom Number Sequences , 1990, IEEE Trans. Computers.

[21]  Antonio Pincin A New Algorithm for Multiplication in Finite Fields , 1989, IEEE Trans. Computers.

[22]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[23]  Christof Paar,et al.  Optimized arithmetic for Reed-Solomon encoders , 1997, Proceedings of IEEE International Symposium on Information Theory.

[24]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[25]  Stafford E. Tavares,et al.  A Fast VLSI Multiplier for GF(2m) , 1986, IEEE J. Sel. Areas Commun..

[26]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[27]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[28]  Allan O. Steinhardt,et al.  Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.