Intralayer charge-transfer moiré excitons in van der Waals superlattices

[1]  D. R. Bacon,et al.  Structure of the moiré exciton captured by imaging its electron and hole , 2022, Nature.

[2]  H. R. Krishnamurthy,et al.  Moiré induced topology and flat bands in twisted bilayer WSe2 : A first-principles study , 2021, Physical Review B.

[3]  Mit H. Naik,et al.  Twister: Construction and structural relaxation of commensurate moiré superlattices , 2021, Comput. Phys. Commun..

[4]  D. Smirnov,et al.  Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2 , 2021, Nature Communications.

[5]  Kenji Watanabe,et al.  Excitonic and Valley-Polarization Signatures of Fractional Correlated Electronic Phases in a WSe_{2}/WS_{2} Moiré Superlattice. , 2021, Physical review letters.

[6]  A. MacDonald,et al.  Γ valley transition metal dichalcogenide moiré bands , 2021, Proceedings of the National Academy of Sciences.

[7]  S. Forrest,et al.  Van der Waals heterostructure polaritons with moiré-induced nonlinearity , 2021, Nature.

[8]  Mit H. Naik,et al.  Imaging local discharge cascades for correlated electrons in WS2/WSe2 moiré superlattices , 2021, Nature Physics.

[9]  M. Lukin,et al.  Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers , 2021, Nature Materials.

[10]  M. Parish,et al.  Electron-exciton interactions in the exciton-polaron problem , 2020, 2011.12667.

[11]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[12]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[13]  P. Erhart,et al.  Tunable Phases of Moiré Excitons in van der Waals Heterostructures , 2020, Nano letters.

[14]  S. Crooker,et al.  Spontaneous Valley Polarization of Interacting Carriers in a Monolayer Semiconductor. , 2020, Physical review letters.

[15]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[16]  G. Lu,et al.  Shedding light on moiré excitons: A first-principles perspective , 2020, Science Advances.

[17]  Christopher C. S. Chan,et al.  Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells , 2020, Nature Communications.

[18]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[19]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[20]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[21]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[22]  Mit H. Naik,et al.  Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots , 2019, 1908.10399.

[23]  Á. Rubio,et al.  Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor , 2019, Nano letters.

[24]  Mit H. Naik,et al.  Kolmogorov–Crespi Potential For Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices , 2019, The Journal of Physical Chemistry C.

[25]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[26]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[27]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[28]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[29]  Jonghwan Kim,et al.  Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures , 2018, Science.

[30]  Steven B. Torrisi,et al.  Relaxation and domain formation in incommensurate two-dimensional heterostructures , 2018, Physical Review B.

[31]  Mit H. Naik,et al.  Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. , 2018, Physical review letters.

[32]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[33]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[34]  Y. Matsushita,et al.  Unfolding energy spectra of double-periodicity two-dimensional systems: Twisted bilayer graphene and MoS 2 on graphene , 2018 .

[35]  J. Shan,et al.  Strongly Interaction-Enhanced Valley Magnetic Response in Monolayer WSe_{2}. , 2017, Physical review letters.

[36]  Mit H. Naik,et al.  Origin of layer dependence in band structures of two-dimensional materials , 2017, 1703.00257.

[37]  Fengcheng Wu,et al.  Topological Exciton Bands in Moiré Heterojunctions. , 2016, Physical review letters.

[38]  S. Louie,et al.  Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures , 2015, Nano letters.

[39]  Li Yang,et al.  Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. , 2014, Physical review letters.

[40]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[41]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[42]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[43]  P. Ajayan,et al.  Second harmonic microscopy of monolayer MoS 2 , 2013, 1302.3935.

[44]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[45]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[46]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[47]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[48]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[49]  Chi-Cheng Lee,et al.  Unfolding first-principles band structures. , 2010, Physical review letters.

[50]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  S. Louie,et al.  Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. , 2007, Physical review letters.

[52]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[53]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[54]  S. Plimpton,et al.  Computational limits of classical molecular dynamics simulations , 1995 .

[55]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[56]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[57]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .