Controller Implementation for a Class of Spatially-Varying Distributed Parameter Systems

Abstract In this paper we discuss fast implementation of the model based centralized controllers using fractional Fourier transform for large scale plant models coming from spatial discretization of a certain type of linear spatially-varying distributed parameter systems. This fast implementation reduces the computational time delay significantly when the dimension of the system is higher than 512 = 2 9 . Compared to direct implementation, the proposed method allows faster sampling. If the control design objectives are demanding fast closed loop modes, then slower sampling required by direct implementation leads to instability. The results are illustrated by an example.

[1]  Hitay Özbay,et al.  Introduction to Feedback Control Theory , 1999 .

[2]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[3]  Kirsten Morris H∞-output feedback of infinite-dimensional systems via approximation , 2001, Syst. Control. Lett..

[4]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[5]  Jeff S. Shamma,et al.  A decomposition approach to distributed control of spatially invariant systems , 2006, IEEE Transactions on Automatic Control.

[6]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[7]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[8]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[9]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[10]  Tamer Basar,et al.  Finite-Dimensional Compensators for the $H^\infty$-Optimal Control of Infinite-Dimensional Systems via a Galerkin-type Approximation , 1999 .

[11]  Stuart Townley,et al.  Robustness with Respect to Delays for Exponential Stability of Distributed Parameter Systems , 1999 .

[12]  J. A. Atwell,et al.  Reduced order controllers for Burgers' equation with a nonlinear observer , 2001 .

[13]  Joseph Bentsman,et al.  Reduced spatial order model reference adaptive control of spatially varying distributed parameter systems of parabolic and hyperbolic types , 2001 .

[14]  Hartmut Logemann,et al.  Destabilizing effects of small time delays on feedback-controlled descriptor systems☆ , 1998 .

[15]  Kazufumi Ito,et al.  An Approximation Theory of Solutions to Operator Riccati Equations for $H^\infty$ Control , 1998 .

[16]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[17]  Ricardo C. H. del Rosario,et al.  Reduced-order model feedback control design: numerical implementation in a thin shell model , 2000, IEEE Trans. Autom. Control..

[18]  Mark S. Gockenbach,et al.  Partial Differential Equations - Analytical and Numerical Methods (2. ed.) , 2011 .

[19]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[20]  Mihailo R. Jovanovic,et al.  Lyapunov-based distributed control of systems on lattices , 2005, IEEE Transactions on Automatic Control.

[21]  Mehmet Onder Low dimensional modelling and Dirichlet boundary controller design for Burgers equation , 2004 .