The conserved zinc-finger protein GTSF1 helps PIWI proteins achieve their full catalytic potential

Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins can be found in all kingdoms of life, and play diverse biological functions including genome defense, gene regulation, and chromosome partitioning. Many Argonautes retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, a specialized class of Argonautes, the PIWI proteins, use 21–35 nt PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalyzed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2), and MIWI2 (PIWIL4)2–4. The piRNA-guided endoribonuclease activities of MIWI and MILI are essential to produce functional sperm5, 6. piRNA-directed silencing in mice and insects also requires Gametocyte-Specific Factor 1 (GTSF1), a PIWI-associated protein of unknown function7–12. Here, we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 represents the first example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.

[1]  P. Zamore,et al.  Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. , 2021, Molecular cell.

[2]  M. Siomi,et al.  DEAD‐box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3‐piRISC , 2021, EMBO reports.

[3]  Z. Weng,et al.  Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes , 2021, Nature communications.

[4]  I. MacRae,et al.  Structural basis for piRNA targeting , 2020, Nature.

[5]  Y. Sakakibara,et al.  Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation , 2020, bioRxiv.

[6]  Xu Yang,et al.  Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori , 2020, PLoS genetics.

[7]  J. Dean,et al.  Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA , 2020, bioRxiv.

[8]  P. Zamore,et al.  Terminal Modification, Sequence, and Length Determine Small RNA Stability in Animals , 2020, bioRxiv.

[9]  L. Joshua-Tor,et al.  Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons , 2020, bioRxiv.

[10]  K. Nakanishi,et al.  Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA , 2020, Proceedings of the National Academy of Sciences.

[11]  Z. Weng,et al.  The Evolutionarily Conserved piRNA-producing Locus pi6 Is Required for Male Mouse Fertility , 2020, Nature Genetics.

[12]  Ramón E. Rivera-Vicéns,et al.  Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri , 2020, Nature Communications.

[13]  H. Nishimasu,et al.  Crystal structure of Drosophila Piwi , 2020, Nature Communications.

[14]  Natsuko Izumi,et al.  Zucchini consensus motifs determine the mechanism of pre-piRNA production , 2020, Nature.

[15]  Z. Weng,et al.  Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans , 2019, Nature Ecology & Evolution.

[16]  Z. Weng,et al.  Evolutionarily Conserved Pachytene piRNA Loci are Highly Divergent among Modern Humans , 2019, Nature Ecology & Evolution.

[17]  P. Zamore,et al.  High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. , 2019, Molecular cell.

[18]  Ronghong Li,et al.  Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes , 2019, Nature Communications.

[19]  Deniz M. Ozata,et al.  PIWI-interacting RNAs: small RNAs with big functions , 2018, Nature Reviews Genetics.

[20]  David Rosenkranz,et al.  PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation , 2018, Communications Biology.

[21]  P. Zamore,et al.  A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals , 2018, bioRxiv.

[22]  J. König,et al.  GTSF‐1 is required for formation of a functional RNA‐dependent RNA Polymerase complex in Caenorhabditis elegans , 2018, The EMBO journal.

[23]  T. Nakano,et al.  PNLDC1, mouse pre‐piRNA Trimmer, is required for meiotic and post‐meiotic male germ cell development , 2018, EMBO reports.

[24]  J. Miyazaki,et al.  Mouse GTSF1 is an essential factor for secondary piRNA biogenesis , 2018, EMBO reports.

[25]  Zhiping Weng,et al.  The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology , 2018, eLife.

[26]  K. Dong,et al.  PNLDC1 is essential for piRNA 3′ end trimming and transposon silencing during spermatogenesis in mice , 2017, Nature Communications.

[27]  Xuejiang Guo,et al.  An essential role for PNLDC1 in piRNA 3′ end trimming and male fertility in mice , 2017, Cell Research.

[28]  Samuel H. Lewis,et al.  Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements , 2017, Nature Ecology & Evolution.

[29]  Yaara Y. Columbus-Shenkar,et al.  Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis , 2017, RNA biology.

[30]  R. Sachidanandam,et al.  Distinct Roles of RNA Helicases MVH and TDRD9 in PIWI Slicing-Triggered Mammalian piRNA Biogenesis and Function , 2017, Developmental cell.

[31]  X. Z. Li,et al.  Domestic chickens activate a piRNA defense against avian leukosis virus , 2017, eLife.

[32]  N. Lau,et al.  Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome , 2017, RNA.

[33]  H. Nishimasu,et al.  Crystal Structure of Silkworm PIWI-Clade Argonaute Siwi Bound to piRNA , 2016, Cell.

[34]  T. Nakano,et al.  MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells. , 2016, Cell reports.

[35]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[36]  J. Miyazaki,et al.  Gtsf1l and Gtsf2 Are Specifically Expressed in Gonocytes and Spermatids but Are Not Essential for Spermatogenesis , 2016, PloS one.

[37]  Natsuko Izumi,et al.  Identification and Functional Analysis of the Pre-piRNA 3′ Trimmer in Silkworms , 2016, Cell.

[38]  Yaoyang Zhang,et al.  Antagonistic roles of Nibbler and Hen1 in modulating piRNA 3′ ends in Drosophila , 2016, Development.

[39]  D. Adelson,et al.  HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse , 2015, PLoS genetics.

[40]  R. Sachidanandam,et al.  PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis. , 2015, Cell reports.

[41]  M. Moore,et al.  Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides , 2015, Cell.

[42]  Zhiping Weng,et al.  piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production , 2015, Science.

[43]  Julius Brennecke,et al.  piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis , 2015, Science.

[44]  Molly Hammell,et al.  piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis , 2015, Genes & development.

[45]  Nancy M Bonini,et al.  The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila , 2015, Aging Cell.

[46]  M. Siomi,et al.  Respective functions of two distinct Siwi complexes assembled during PIWI-interacting RNA biogenesis in Bombyx germ cells. , 2015, Cell reports.

[47]  Shunmin He,et al.  MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes , 2015, Cell Research.

[48]  A. Aravin,et al.  A transgenerational process defines piRNA biogenesis in Drosophila virilis. , 2014, Cell reports.

[49]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[50]  Maike A. Laussmann,et al.  RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts , 2014, Cell.

[51]  R. Sachidanandam,et al.  The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs , 2014, RNA.

[52]  Yong Li,et al.  Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis , 2014, Cell Research.

[53]  Satoru Kobayashi,et al.  Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. , 2014, Developmental biology.

[54]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[55]  R. Reenan,et al.  PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells , 2013, Proceedings of the National Academy of Sciences.

[56]  C. Ricciardelli,et al.  Conservation and Expression of PIWI-Interacting RNA Pathway Genes in Male and Female Adult Gonad of Amniotes1 , 2013, Biology of reproduction.

[57]  Y. Okada,et al.  Establishment of Alternative Culture Method for Spermatogonial Stem Cells Using Knockout Serum Replacement , 2013, PloS one.

[58]  Grzegorz Sienski,et al.  Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. , 2013, Genes & development.

[59]  Kuniaki Saito,et al.  DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. , 2013, Genes & development.

[60]  Caifu Chen,et al.  A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. , 2013, Molecular cell.

[61]  Zhiping Weng,et al.  An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. , 2013, Molecular cell.

[62]  Phillip D Zamore,et al.  Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates. , 2013, RNA.

[63]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[64]  C. Burge,et al.  Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues , 2012, Science.

[65]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[66]  G. Hannon,et al.  The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis , 2012, Nature.

[67]  Lucas J. T. Kaaij,et al.  Differential Impact of the HEN1 Homolog HENN-1 on 21U and 26G RNAs in the Germline of Caenorhabditis elegans , 2012, PLoS genetics.

[68]  P. Alexiou,et al.  Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis , 2012, Nature Structural &Molecular Biology.

[69]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[70]  John K. Kim,et al.  The Caenorhabditis elegans HEN1 Ortholog, HENN-1, Methylates and Stabilizes Select Subclasses of Germline Small RNAs , 2012, PLoS genetics.

[71]  G. Ruvkun,et al.  PIWI Associated siRNAs and piRNAs Specifically Require the Caenorhabditis elegans HEN1 Ortholog henn-1 , 2012, PLoS genetics.

[72]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[73]  Anton J. Enright,et al.  The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements , 2011, Nature.

[74]  Ravi Sachidanandam,et al.  Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing , 2011, Nature.

[75]  S. Kawaoka,et al.  3' end formation of PIWI-interacting RNAs in vitro. , 2011, Molecular cell.

[76]  B. Degnan,et al.  Evolution of RNA-binding proteins in animals: insights from genome-wide analysis in the sponge Amphimedon queenslandica. , 2011, Molecular biology and evolution.

[77]  K. Kadota,et al.  Zygotic amplification of secondary piRNAs during silkworm embryogenesis. , 2011, RNA.

[78]  Caifu Chen,et al.  Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. , 2010, Genes & development.

[79]  Lucas J. T. Kaaij,et al.  Hen1 is required for oocyte development and piRNA stability in zebrafish , 2010, The EMBO journal.

[80]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[81]  M. Siomi,et al.  How does the royal family of Tudor rule the PIWI-interacting RNA pathway? , 2010, Genes & development.

[82]  Z. Paroo,et al.  ATP-dependent human RISC assembly pathways , 2010, Nature Structural &Molecular Biology.

[83]  J. Miyazaki,et al.  Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. , 2009, Developmental biology.

[84]  T. Tuschl,et al.  Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes , 2009, Nature.

[85]  R. Sachidanandam,et al.  Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. , 2009, Genes & development.

[86]  S. Sugano,et al.  The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. , 2009, RNA.

[87]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[88]  S. Clarke,et al.  Protein arginine methylation in mammals: who, what, and why. , 2009, Molecular cell.

[89]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[90]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[91]  Ravi Sachidanandam,et al.  A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. , 2008, Molecular cell.

[92]  Antonina Andreeva,et al.  A novel CHHC Zn-finger domain found in spliceosomal proteins and tRNA modifying enzymes , 2008, Bioinform..

[93]  A. Hamilton,et al.  Improved northern blot method for enhanced detection of small RNA , 2008, Nature Protocols.

[94]  Manolis Kellis,et al.  Conservation of small RNA pathways in platypus Material Supplemental , 2008 .

[95]  Kenichiro Hata,et al.  DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. , 2008, Genes & development.

[96]  Z. Mourelatos,et al.  2'-O-methyl modification in mouse piRNAs and its methylase. , 2007, Nucleic acids symposium series.

[97]  Zissimos Mourelatos,et al.  The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. , 2007, RNA.

[98]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[99]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[100]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[101]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[102]  Alain Bucheton,et al.  A Novel Repeat-Associated Small Interfering RNA-Mediated Silencing Pathway Downregulates Complementary Sense gypsy Transcripts in Somatic Cells of the Drosophila Ovary , 2006, Journal of Virology.

[103]  Robert E. Johnson,et al.  Human DNA polymerase κ forms nonproductive complexes with matched primer termini but not with mismatched primer termini , 2006, Proceedings of the National Academy of Sciences.

[104]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[105]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[106]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[107]  Haifan Lin,et al.  A novel class of small RNAs in mouse spermatogenic cells. , 2006, Genes & development.

[108]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[109]  T. Hall,et al.  Multiple modes of RNA recognition by zinc finger proteins. , 2005, Current opinion in structural biology.

[110]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[111]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[112]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[113]  David E. Ott,et al.  Elimination of Retroviral Infectivity by N-Ethylmaleimide with Preservation of Functional Envelope Glycoproteins , 2005, Journal of Virology.

[114]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[115]  H. Dyson,et al.  The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2. , 2004, The Biochemical journal.

[116]  J. Nyborg,et al.  That zincing feeling: the effects of EDTA on the behaviour of zinc-binding transcriptional regulators. , 2004, The Biochemical journal.

[117]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[118]  Yoichi Matsuda,et al.  Mili, a mammalian member of piwi family gene, is essential for spermatogenesis , 2004, Development.

[119]  Guiliang Tang,et al.  In vitro analysis of RNA interference in Drosophila melanogaster. , 2003, Methods.

[120]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[121]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[122]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[123]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[124]  W. Deng,et al.  miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. , 2002, Developmental cell.

[125]  A Klug,et al.  Zinc fingers , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[126]  J. Berg,et al.  Metal binding and folding properties of a minimalist Cys2His2 zinc finger peptide. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[127]  R. B. Heisch How, what and why. , 1963, East African medical journal.