Rigidity and flexibility of isometric extensions

In this paper we consider the rigidity and flexibility of $C^{1, \theta}$ isometric extensions and we show that the H\"older exponent $\theta_0=\frac12$ is critical in the following sense: if $u\in C^{1,\theta}$ is an isometric extension of a smooth isometric embedding of a codimension one submanifold $\Sigma$ and $\theta> \frac12$, then the tangential connection agrees with the Levi-Civita connection along $\Sigma$. On the other hand, for any $\theta<\frac12$ we can construct $C^{1,\theta}$ isometric extensions via convex integration which violate such property. As a byproduct we get moreover an existence theorem for $C^{1, \theta}$ isometric embeddings, $\theta<\frac12$, of compact Riemannian manifolds with $C^1$ metrics and sharper amount of codimension.

[1]  Stefan Friedl Algebraic topology , 2020, Graduate Studies in Mathematics.

[2]  Camillo De Lellis,et al.  C1, isometric embeddings of polar caps , 2020 .

[3]  Wentao Cao,et al.  Global Nash–Kuiper theorem for compact manifolds , 2019, Journal of Differential Geometry.

[4]  Wentao Cao The semi-global isometric embedding of surfaces with curvature changing signs stably , 2019, Proceedings of the American Mathematical Society.

[5]  K. Chandrasekran,et al.  Geometric , 2019, Encyclopedic Dictionary of Archaeology.

[6]  V. Vicol,et al.  Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.

[7]  Vlad Vicol,et al.  Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.

[8]  M. Gromov Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .

[9]  Camillo De Lellis,et al.  High dimensionality and h-principle in PDE , 2016, 1609.03180.

[10]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[11]  N. Hungerbühler,et al.  The One-Sided Isometric Extension Problem , 2014, 1410.0232.

[12]  Camillo De Lellis,et al.  Dissipative Euler Flows with Onsager‐Critical Spatial Regularity , 2014, 1404.6915.

[13]  Camillo De Lellis,et al.  Dissipative continuous Euler flows , 2012, 1202.1751.

[14]  M. Khuri The Local Isometric Embedding in R^3 of Two-Dimensional Riemannian Manifolds With Gaussian Curvature Changing Sign to Finite Order on a Curve , 2007, 1003.2244.

[15]  Qing Han On the isometric embedding of surfaces with Gauss curvature changing sign cleanly , 2005 .

[16]  E Weinan,et al.  Onsager's conjecture on the energy conservation for solutions of Euler's equation , 1994 .

[17]  Changshou Lin The local isometric embedding in R3 of two‐dimensional riemannian manifolds with gaussian curvature changing sign cleanly , 1986 .

[18]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[19]  A. Källén Isometric embedding of a smooth compact manifold with a metric of low regularity , 1978 .

[20]  J. Nash C 1 Isometric Imbeddings , 1954 .

[21]  G. Herglotz Über die starrheit der eiflächen , 1943 .

[22]  Camillo De Lellis,et al.  A NASH-KUIPER THEOREM FOR C1,/5−δ IMMERSIONS OF SURFACES IN 3 DIMENSIONS , 2016 .

[23]  Sergio Conti,et al.  h -Principle and Rigidity for C 1, α Isometric Embeddings , 2012 .

[24]  Qing Han Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve , 2006 .

[25]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[26]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[27]  H. Jacobowitz Extending isometric embeddings , 1974 .