Rigidity and flexibility of isometric extensions
暂无分享,去创建一个
[1] Stefan Friedl. Algebraic topology , 2020, Graduate Studies in Mathematics.
[2] Camillo De Lellis,et al. C1, isometric embeddings of polar caps , 2020 .
[3] Wentao Cao,et al. Global Nash–Kuiper theorem for compact manifolds , 2019, Journal of Differential Geometry.
[4] Wentao Cao. The semi-global isometric embedding of surfaces with curvature changing signs stably , 2019, Proceedings of the American Mathematical Society.
[5] K. Chandrasekran,et al. Geometric , 2019, Encyclopedic Dictionary of Archaeology.
[6] V. Vicol,et al. Nonuniqueness of weak solutions to the Navier-Stokes equation , 2017, Annals of Mathematics.
[7] Vlad Vicol,et al. Onsager's Conjecture for Admissible Weak Solutions , 2017, Communications on Pure and Applied Mathematics.
[8] M. Gromov. Geometric, algebraic, and analytic descendants of Nash isometric embedding theorems , 2016 .
[9] Camillo De Lellis,et al. High dimensionality and h-principle in PDE , 2016, 1609.03180.
[10] Philip Isett,et al. A Proof of Onsager's Conjecture , 2016, 1608.08301.
[11] N. Hungerbühler,et al. The One-Sided Isometric Extension Problem , 2014, 1410.0232.
[12] Camillo De Lellis,et al. Dissipative Euler Flows with Onsager‐Critical Spatial Regularity , 2014, 1404.6915.
[13] Camillo De Lellis,et al. Dissipative continuous Euler flows , 2012, 1202.1751.
[14] M. Khuri. The Local Isometric Embedding in R^3 of Two-Dimensional Riemannian Manifolds With Gaussian Curvature Changing Sign to Finite Order on a Curve , 2007, 1003.2244.
[15] Qing Han. On the isometric embedding of surfaces with Gauss curvature changing sign cleanly , 2005 .
[16] E Weinan,et al. Onsager's conjecture on the energy conservation for solutions of Euler's equation , 1994 .
[17] Changshou Lin. The local isometric embedding in R3 of two‐dimensional riemannian manifolds with gaussian curvature changing sign cleanly , 1986 .
[18] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .
[19] A. Källén. Isometric embedding of a smooth compact manifold with a metric of low regularity , 1978 .
[20] J. Nash. C 1 Isometric Imbeddings , 1954 .
[21] G. Herglotz. Über die starrheit der eiflächen , 1943 .
[22] Camillo De Lellis,et al. A NASH-KUIPER THEOREM FOR C1,/5−δ IMMERSIONS OF SURFACES IN 3 DIMENSIONS , 2016 .
[23] Sergio Conti,et al. h -Principle and Rigidity for C 1, α Isometric Embeddings , 2012 .
[24] Qing Han. Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve , 2006 .
[25] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[26] R. Ansorge. Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .
[27] H. Jacobowitz. Extending isometric embeddings , 1974 .