Weighted finite element method for the Stokes problem with corner singularity

Abstract In this paper we introduce the notion of R ν -generalized solution to the Stokes problem with singularity in a non-convex polygonal domain with one reentrant corner of 3 π 2 on its boundary. The weighted analogue of the Ladyzhenskaya–Babuska–Brezzi condition is proved. A new weighted finite element method is constructed. Results of numerical experiments have shown the efficiency of the method.

[1]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[2]  Viktor A. Rukavishnikov,et al.  The finite element method for a boundary value problem with strong singularity , 2010, J. Comput. Appl. Math..

[3]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[4]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[5]  Jakub Šístek,et al.  Precise FEM solution of a corner singularity using an adjusted mesh , 2005 .

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  H. Blum The Influence of Reentrant Corners in the Numerical Approximation of Viscous Flow Problems , 1990 .

[8]  Victor A. Rukavishnikov,et al.  New numerical method for solving time-harmonic Maxwell equations with strong singularity , 2012, J. Comput. Phys..

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[11]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[12]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[14]  Christoph Schwab,et al.  Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces , 2006 .

[15]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[16]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[17]  Maxim A. Olshanskii,et al.  Analysis of a Stokes interface problem , 2006, Numerische Mathematik.

[18]  V. Rukavishnikov,et al.  Weighted finite element method for an elasticity problem with singularity , 2013 .

[19]  Young-Ju Lee,et al.  Axisymmetric Stokes equations in polygonal domains: Regularity and finite element approximations , 2012, Comput. Math. Appl..

[20]  Christine Bernardi,et al.  Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .

[21]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .