Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures
暂无分享,去创建一个
Arnaud Doucet | Manuel Davy | Emmanuel Duflos | François Caron | Philippe Vanheeghe | A. Doucet | M. Davy | F. Caron | E. Duflos | P. Vanheeghe
[1] K. Fu,et al. On state estimation in switching environments , 1968 .
[2] K. Ito,et al. On State Estimation in Switching Environments , 1970 .
[3] R. Mehra. On the identification of variances and adaptive Kalman filtering , 1970 .
[4] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[5] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[6] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[7] B. Tapley,et al. Adaptive sequential estimation with unknown noise statistics , 1976 .
[8] Hiromitsu Kumamoto,et al. Random sampling approach to state estimation in switching environments , 1977, Autom..
[9] R. Maine,et al. Formulation and implementation of a practical algorithm for parameter estimation with process and measurement noise , 1980 .
[10] K. Gordon,et al. Modeling and Monitoring Biomedical Time Series , 1990 .
[11] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[12] M. West,et al. Hyperparameter estimation in Dirichlet process mixture models , 1992 .
[13] N. Shephard. Partial non-Gaussian state space , 1994 .
[14] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[15] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[16] R. Kohn,et al. Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .
[17] A. Raftery,et al. A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability , 1997 .
[18] J. L. Maryak,et al. Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[19] Patrick Duvaut,et al. Bayesian estimation of state-space models applied to deconvolution of Bernoulli - Gaussian processes , 1997, Signal Process..
[20] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[21] Purushottam W. Laud,et al. Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .
[22] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[23] A. Pievatolo,et al. Analysing the interevent time distribution to identify seismicity phases: a Bayesian nonparametric approach to the multiple‐changepoint problem , 2000 .
[24] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[25] M. Escobar,et al. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[26] Steven N. MacEachern,et al. Efficient MCMC Schemes for Robust Model Extensions Using Encompassing Dirichlet Process Mixture Models , 2000 .
[27] Christophe Andrieu,et al. Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[28] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[29] Arnaud Doucet,et al. Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[30] Siem Jan Koopman,et al. A simple and efficient simulation smoother for state space time series analysis , 2002 .
[31] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[32] P. Green,et al. Modelling Heterogeneity With and Without the Dirichlet Process , 2001 .
[33] Mario Medvedovic,et al. Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..
[34] M. Steel,et al. Semiparametric Bayesian Inference for Stochastic Frontier Models , 2004 .
[35] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[36] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[37] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[38] Fernando A. Quintana,et al. Nonparametric Bayesian data analysis , 2004 .
[39] J. L. Maryak,et al. Use of the Kalman filter for inference in state-space models with unknown noise distributions , 1996, IEEE Transactions on Automatic Control.
[40] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[41] Marco J. Lombardi,et al. On-line Bayesian Estimation of Signals in Symmetric α-Stable Noise , 2004 .
[42] P. Müller,et al. A Bayesian mixture model for differential gene expression , 2005 .
[43] Arnaud Doucet,et al. Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[44] Volkan Cevher,et al. General direction-of-arrival tracking with acoustic nodes , 2005, IEEE Transactions on Signal Processing.
[45] Simon J. Godsill,et al. On-line Bayesian estimation of signals in symmetric /spl alpha/-stable noise , 2006, IEEE Transactions on Signal Processing.
[46] Michael A. West,et al. Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .
[47] Arnaud Doucet,et al. Bayesian Inference for Dynamic Models with Dirichlet Process Mixtures , 2006, 2006 9th International Conference on Information Fusion.
[48] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.