Investigation on microstructures, electronic structures, electromagnetic properties and microwave absorption properties of Fe3Si/PPy composites

[1]  Q. Xie,et al.  Theoretical study on the electronic structures and electromagnetic wave absorption properties of Fe3Si/PPy composites , 2021 .

[2]  M. Patra,et al.  Preparation of Fe–Si–Al intermetallic alloy and their composite coating for EM absorbing application in 6–18 GHz , 2020, SN Applied Sciences.

[3]  Yujin Chen,et al.  Urchin-Like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation. , 2020, ACS applied materials & interfaces.

[4]  Fan Wu,et al.  Facile growth of coaxial Ag@polypyrrole nanowires for highly tunable electromagnetic waves absorption , 2018, Materials & Design.

[5]  G. Wen,et al.  Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous SiCO ceramic matrix , 2018 .

[6]  Yanjing Su,et al.  The study of Fe@FeCo and Fe@FeCo@Au core-shell structure by the First-principles theory , 2018, Materials Chemistry and Physics.

[7]  Da Li,et al.  Magnetic Behavior, Electromagnetic Multiresonances, and Microwave Absorption of the Interfacial Engineered Fe@FeSi/SiO2 Nanocomposite , 2018 .

[8]  Jian Liu,et al.  Uniform core–shell PPy@carbon microsphere composites with a tunable shell thickness: the synthesis and their excellent microwave absorption performances in the X-band , 2017 .

[9]  Y. Lei,et al.  Preparation, characterization and electrochemical performance of graphene from microcrystalline graphite , 2017, Journal of Materials Science: Materials in Electronics.

[10]  S. Bose,et al.  Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. , 2017, ACS applied materials & interfaces.

[11]  Xuandong Li,et al.  Rational design of core-shell Co@C microspheres for high-performance microwave absorption , 2017 .

[12]  Yanglong Hou,et al.  Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption , 2016 .

[13]  Qiuyu Zhang,et al.  Well-Defined Core–Shell Fe3O4@Polypyrrole Composite Microspheres with Tunable Shell Thickness: Synthesis and Their Superior Microwave Absorption Performance in the Ku Band , 2016 .

[14]  Fan Wu,et al.  Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption , 2016 .

[15]  Y. Choa,et al.  Synthesis, Morphology Control and Electromagnetic Wave Absorption Properties of Electrospun FeCo Alloy Nanofibers. , 2016, Journal of nanoscience and nanotechnology.

[16]  L. Zhen,et al.  Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process , 2015 .

[17]  Fan Wu,et al.  Hybrid of MoS₂ and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber. , 2015, ACS applied materials & interfaces.

[18]  Guangqiang Li,et al.  Core–shell structured FeSiAl/SiO2 particles and Fe3Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses , 2015 .

[19]  S. Ebrahimi,et al.  Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface , 2015 .

[20]  J. Lee,et al.  Annealing effect on microstructure and magnetic properties of flake-shaped agglomerates of Ni–20wt%Fe nanopowder , 2014 .

[21]  R. Cai,et al.  Preparation of the PBOPy/PPy/Fe3O4 composites with high microwave absorption performance and thermal stability , 2014 .

[22]  Q. Xie,et al.  Theoretical study on the electronic structures and magnetism of Fe3Si intermetallic compound , 2013 .

[23]  Hong Bi,et al.  Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites , 2013 .

[24]  Faxiang Qin,et al.  A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles , 2012 .

[25]  D. Singh,et al.  Thermal, dielectric and microwave absorption properties of polyaniline–CoFe2O4 nanocomposites , 2011 .

[26]  Chunchun Liu,et al.  Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots , 2011 .

[27]  Jianguo Guan,et al.  Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties , 2011 .

[28]  Qiao-ling Li,et al.  Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method , 2011 .

[29]  A. V. Kadam,et al.  Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance , 2010 .

[30]  Xiaoyun Li,et al.  Microwave absorption properties of the carbonyl iron/EPDM radar absorbing materials , 2007 .

[31]  Yen Wei,et al.  Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites. , 2006, The journal of physical chemistry. B.

[32]  G. Xue,et al.  Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres , 2003 .

[33]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[34]  V. Milman,et al.  Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals , 2000 .

[35]  K. Suetake,et al.  Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics , 1970 .

[36]  Jean-Marie André,et al.  L'Étude Théorique des Systèmes Périodiques. II. La MéthodeLCAOSCFCO: LA MÉTHODELCAOSCFCO-II , 1967 .

[37]  E. Lippincott Derivation of an Internuclear Potential Function from a Quantum Mechanical Model , 1955 .