GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
暂无分享,去创建一个
B. A. Boom | H. N. Isa | P. B. Covas | M. Fejer | P. Couvares | J. Gair | S. Babak | N. Gehrels | S. Barthelmy | S. Fairhurst | A. Heptonstall | D. Hofman | B. Abbott | E. Huerta | Z. Etienne | M. Fishbach | D. George | Zoheyr Doctor | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | G. Allen | A. Allocca | P. Altin | A. Amato | A. Ananyeva | S. Anderson | W. Anderson | S. Angelova | S. Appert | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | K. AultONeal | C. Austin | A. Ávila-Álvarez | P. Bacon | M. Bader | S. Bae | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | S. Barclay | B. Barish | D. Barker | K. Barkett | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | B. Bécsy | M. Bejger | A. Bell | G. Bergmann | S. Bernuzzi | J. J. Bero | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | N. Bode | M. Boer | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | R. Bork | V. Boschi | S. Bose | K. Bossie | Y. Bouffanais | A. Bozzi | C. Bradaschia | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | T. Callister | E. Calloni | J. Camp | K. Cannon | H. Cao | J. Cao | E. Capocasa | F. Carbognani | S. Caride | M. Carney | Gregorio Carullo | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | P. Cerdá-Durán | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | E. Chase | É. Chassande-Mottin | D. Chatterjee | K. Chatziioannou | B. Cheeseboro | X. Chen | Y. Chen | H.-P. Cheng | H. Chia | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | R. Ciolfi | A. Cirone | F. Clara | J. Clark | P. Clearwater | F. Cleva | C. Cocchieri | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | S. Cooper | P. Corban | I. Cordero-Carrión | K. R. Corley | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | J. Cripe | S. Crowder | T. Cullen | A. Cumming | L. Cunningham | E. Cuoco | G. Dálya | S. Danilishin | S. D’Antonio | K. Danzmann | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | J. Degallaix | S. Deleglise | N. Demos | T. Dent | R. DeSalvo | S. Dhurandhar | M. Díaz | T. Dietrich | F. Donovan | K. Dooley | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | R. Eisenstein | D. Estevez | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | C. Fee | J. Feicht | Á. Fernández-Galiana | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | M. Fitz-Axen | R. Flaminio | M. Fletcher | H. Fong | J. Font | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | L. Gammaitoni | M. Ganija | S. Gaonkar | C. García-Quirós | F. Garufi | B. Gateley | S. Gaudio | G. Gaur | V. Gayathri | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | S. Ghonge | Abhirup Ghosh | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | L. Glover | E. Goetz | R. Goetz | B. Goncharov | G. González | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | E. Gretarsson | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | R. Gustafson | O. Halim | B. Hall | E. Hall | E. Hamilton | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | O. Hannuksela | J. Hanson | T. Hardwick | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | T. Hinderer | D. Hoak | K. Holt | P. Hopkins | C. Horst | J. Hough | E. Howell | A. Hreibi | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | G. Intini | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | J. Junker | C. Kalaghatgi | B. Kamai | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Antier | N. Arnaud | K. Arun | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | V. Brisson | M. Canepa | F. Cavalier | E. Coccia | D. Cohen | M. Davier | R. Essick | V. Frey | P. Gruning | M. Hannam | P. Hello | D. Huet | K. Izumi | N. Johnson-McDaniel | V. Kalogera | T. Adams | P. Addesso | B. Allen | M. Ast | C. Aulbert | J. Batch | S. Bhagwat | C. Biwer | O. Bock | A. Bohé | D. Brown | C. Buchanan | J. Calderón Bustillo | C. Capano | J. Casanueva Diaz | C. Cepeda | J. Chow | A. Colla | T. Dal Canton | M. De Laurentis | W. Del Pozzo | T. Denker | V. Dergachev | R. Derosa | R. De Rosa | L. Di Fiore | M. Di Giovanni | A. Di Lieto | I. Di Palma | V. Dolique | R. Douglas | M. Ducrot | H. Eggenstein | M. Factourovich | H. Fehrmann | K. Giardina | X. Guo | K. Gushwa | M. Hart | E. Houston | N. Indik | S. Jawahar | F. Jiménez-Forteza | W. Johnson | B. Agarwal | C. Dreissigacker | M. Afrough | D. V. Atallah | C. Beer | C. Billman | J. Broida | P. Canizares | T. Chmiel | A. J. Chua | A. K. Chung | C. Cirelli | A. Dasgupta | B. Day | S. De | J. Devenson | D. Finstad | S. Forsyth | E. Fries | J. George | S. Gomes | Y. Hu | E. Ferreira | R. Dudi | W. Ho | E. Gustafson | P. Brady | R. Byer | T. Corbitt | C. F. Da Silva Costa | T. Di Girolamo | S. Di Pace | F. di Renzo | M. Dovale Álvarez | J. G. Gonzalez Castro | R. De Pietri | C. De Rossi | O. de Varona | M. Bailes | P. W. F. Forsyth | Y. Hu | H. Cho | M. di Giovanni | J. Bero | D. Brown | S. Ghosh | A. Bell | K. Corley | S. Anderson | M. Gupta | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | D. Jones | M. Dovale álvarez | A. Ghosh | G. Hammond | K. Holt | J. Brau
[1] L. S. Collaboration,et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .
[2] David Blair,et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.
[3] E. Bozzo,et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.
[4] J. Prochaska,et al. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source , 2017, 1710.05439.
[5] J. Prochaska,et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.
[6] C. A. Wilson-Hodge,et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.
[7] J. K. Blackburn,et al. A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.
[8] B. A. Boom,et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.
[9] D. Champion,et al. Formation of Double Neutron Star Systems , 2017, 1706.09438.
[10] B. A. Boom,et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.
[11] V. Cardoso,et al. Publisher's Note: Testing strong-field gravity with tidal Love numbers [Phys. Rev. D 95, 084014 (2017)] , 2017 .
[12] Anthony L. Piro,et al. The Fate of Neutron Star Binary Mergers , 2017, 1704.08697.
[13] T. Dietrich,et al. Comprehensive comparison of numerical relativity and effective-one-body results to inform improvements in waveform models for binary neutron star systems , 2017, 1702.02053.
[14] V. Cardoso,et al. Testing strong-field gravity with tidal Love numbers , 2017, 1701.01116.
[15] B. A. Boom,et al. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.
[16] Michael Boyle,et al. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.
[17] Chad R. Galley,et al. Effective-one-body waveforms for binary neutron stars using surrogate models , 2016, 1610.04742.
[18] S. Bernuzzi,et al. Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio , 2016, 1607.06636.
[19] L. Baiotti,et al. Binary neutron star mergers: a review of Einstein’s richest laboratory , 2016, Reports on progress in physics. Physical Society.
[20] Cody Messick,et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.
[21] A. Kienlin,et al. GRB 170817A: Fermi GBM detection. , 2017 .
[22] Leo Singer,et al. Ligo-Cbc/Pycbc: O2 Production Release 7 , 2017 .
[23] C. Palenzuela,et al. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale , 2016, 1608.08637.
[24] A. Taracchini,et al. Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.
[25] Y. Wang,et al. Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.
[26] B. A. Boom,et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.
[27] D Huet,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .
[28] David Blair,et al. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.
[29] Michael Purrer,et al. Fast and accurate inference on gravitational waves from precessing compact binaries , 2016, 1604.08253.
[30] B. A. Boom,et al. GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .
[31] P. Graff,et al. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.
[32] P. Freire,et al. Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.
[33] Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars , 2016, 1603.01286.
[34] B. A. Boom,et al. ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .
[35] D Huet,et al. Tests of General Relativity with GW150914. , 2016, Physical review letters.
[36] B. A. Boom,et al. THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.
[37] Y. Wang,et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..
[38] Juri Poutanen,et al. Colloquium: Measuring the neutron star equation of state using x-ray timing , 2016, 1602.01081.
[39] Lawrence E. Kidder,et al. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.
[40] K. G. Arun,et al. Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update , 2016, 1601.05588.
[41] P. Lasky,et al. Observationally constraining gravitational wave emission from short gamma-ray burst remnants , 2015, 1512.05368.
[42] F. Ohme,et al. Can we measure individual black-hole spins from gravitational-wave observations? , 2015, 1512.04955.
[43] G. Mitselmakher,et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.
[44] R. Pietri,et al. Modeling equal and unequal mass binary neutron star mergers using public codes , 2015, 1509.08804.
[45] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.
[46] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.
[47] Matthew West,et al. The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.
[48] Ulrike Goldschmidt,et al. Three Hundred Years Of Gravitation , 2016 .
[49] J. Lattimer,et al. The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.
[50] Y. Wang,et al. All-sky search for long-duration gravitational wave transients with initial LIGO , 2016 .
[51] L. Nuttall,et al. GEO 600 and the GEO-HF upgrade program: successes and challenges , 2015, 1510.00317.
[52] D. Shoemaker,et al. Observing gravitational waves from the post-merger phase of binary neutron star coalescence , 2015, 1509.08522.
[53] P. D'Avanzo,et al. Short gamma-ray bursts: A review , 2015 .
[54] A. P. Lundgren,et al. Improving the data quality of Advanced LIGO based on early engineering run results , 2015, 1508.07316.
[55] Leo P. Singer,et al. WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .
[56] P. Graff,et al. PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS , 2015, 1508.05336.
[57] P. Landry,et al. Tidal deformation of a slowly rotating material body: External metric , 2015, 1503.07366.
[58] L. Gualtieri,et al. Tidal deformations of a spinning compact object , 2015, 1503.07365.
[59] C. Broeck,et al. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars , 2015, 1503.05405.
[60] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[61] E. Porter,et al. Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order , 2015, 1501.01529.
[62] T. Damour,et al. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. , 2014, Physical review letters.
[63] B. Lackey,et al. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars , 2014, 1410.8866.
[64] P. Graff,et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.
[65] A. Ashtekar,et al. General Relativity and Gravitation: A Centennial Perspective , 2014, 1409.5823.
[66] S. Gandolfi,et al. Using Neutron Star Observations to Determine Crust Thicknesses, Moments of Inertia, and Tidal Deformabilities , 2014, 1403.7546.
[67] Chunglee Kim,et al. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate , 2013, 1308.4676.
[68] P. Graff,et al. PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.
[69] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[70] R. Schofield,et al. Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.
[71] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[72] S. Bernuzzi,et al. Quasiuniversal properties of neutron star mergers , 2014, 1402.6244.
[73] B. Lackey,et al. Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.
[74] N. Yunes,et al. Love number can be hard to measure , 2014 .
[75] Marc Favata. Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.
[76] John T. Whelan,et al. Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.
[77] Frank Ohme,et al. Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.
[78] Luc Blanchet,et al. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.
[79] F. Barone,et al. Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .
[80] M. Agathos,et al. Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors. , 2013, Physical review letters.
[81] A. Lundgren,et al. Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis , 2013, 1304.7017.
[82] R. Lynch,et al. A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.
[83] Marco Drago,et al. Regression of environmental noise in LIGO data , 2013, 1503.07476.
[84] Keita Kawabe,et al. Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise , 2013, 1311.6835.
[85] S. Marsat,et al. Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.
[86] Chris L. Fryer,et al. WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.
[87] Duncan A. Brown,et al. Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.
[88] Alexander H. Nitz,et al. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors , 2012, 1207.6406.
[89] W. Farr,et al. MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.
[90] T. Damour,et al. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.
[91] R. Adhikari,et al. Active noise cancellation in a suspended interferometer. , 2011, The Review of scientific instruments.
[92] M. Smolkin,et al. Black hole stereotyping: induced gravito-static polarization , 2011, 1110.3764.
[93] Bruce Allen,et al. FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.
[94] R. Lynch,et al. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS , 2011, 1112.2612.
[95] K. G. Arun,et al. Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms [Erratum [Phys. Rev. D 79, 104023 (2009)]] , 2011 .
[96] Erin Kara,et al. TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.
[97] T. Hinderer,et al. Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.
[98] L. Lin,et al. THE SPIN PARAMETER OF UNIFORMLY ROTATING COMPACT STARS , 2010, 1011.3563.
[99] M Hannam,et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.
[100] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[101] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[102] J. Lattimer,et al. Tidal Love numbers of neutron and self-bound quark stars , 2010, 1004.5098.
[103] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[104] A. Buonanno,et al. An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.
[105] T. Damour,et al. Effective one body description of tidal effects in inspiralling compact binaries , 2009, 0911.5041.
[106] B. Lackey,et al. Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.
[107] The VIRGO Collaboration , 2010 .
[108] D. J. Fixsen,et al. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.
[109] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[110] T. Damour,et al. Relativistic tidal properties of neutron stars , 2009, 0906.0096.
[111] E. Poisson,et al. Relativistic theory of tidal Love numbers , 2009, 0906.1366.
[112] Thibault Damour,et al. Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.
[113] Masaru Shibata,et al. Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.
[114] B. Lackey,et al. Constraints on a phenomenologically parametrized neutron-star equation of state , 2008, 0812.2163.
[115] K. G. Arun,et al. Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2008, 0810.5336.
[116] K. Masters,et al. Erratum: “Groups of Galaxies in the Two Micron All Sky Redshift Survey” (ApJ, 655, 790 [2007]) , 2008 .
[117] É. Racine. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.
[118] T. Damour,et al. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.
[119] T. Hinderer. Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.
[120] T. Hinderer,et al. Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.
[121] P. Ajith,et al. A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.
[122] A. Buonanno,et al. Erratum: Higher-order spin effects in the dynamics of compact binaries. II. Radiation field [Phys. Rev. D 74, 104034 (2006)] , 2007 .
[123] K. Masters,et al. Groups of Galaxies in the Two Micron All Sky Redshift Survey , 2006, astro-ph/0610732.
[124] A. Buonanno,et al. Higher-order spin effects in the dynamics of compact binaries. II. Radiation field , 2006, gr-qc/0605140.
[125] S. Ransom,et al. A Radio Pulsar Spinning at 716 Hz , 2006, Science.
[126] B. Lackey,et al. Observational constraints on hyperons in neutron stars , 2005, astro-ph/0507312.
[127] Effective field theory of gravity for extended objects , 2004, hep-th/0409156.
[128] L. Gergely,et al. Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.
[129] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2005 .
[130] B. Allen. χ2 time-frequency discriminator for gravitational wave detection , 2004, gr-qc/0405045.
[131] E. Katsavounidis,et al. Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.
[132] Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[133] T. Damour,et al. Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.
[134] B. C. Joshi,et al. The Cosmic Coalescence Rates for Double Neutron Star Binaries , 2003, astro-ph/0312101.
[135] C. Kim,et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system , 2003, Nature.
[136] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.
[137] Chunglee Kim,et al. The Probability Distribution Of Binary Pulsar Coalescence Rates. II. Neutron Star-White Dwarf Binaries , 2002, astro-ph/0402162.
[138] N. Andersson. Gravitational waves from instabilities in relativistic stars , 2002, astro-ph/0211057.
[139] P. Haensel,et al. A unified equation of state of dense matter and neutron star structure , 2001, astro-ph/0111092.
[140] T. Damour,et al. Dimensional regularization of the gravitational interaction of point masses in the ADM formalism , 2001, gr-qc/0105038.
[141] T. Damour,et al. Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.
[142] M. Shibata,et al. Simulation of merging binary neutron stars in full general relativity: Γ=2 case , 1999, gr-qc/9911058.
[143] T. Damour,et al. Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.
[144] B. Owen,et al. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.
[145] V. Pandharipande,et al. Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.
[146] Robert Grover Brown,et al. Introduction to random signals and applied Kalman filtering : with MATLAB exercises and solutions , 1996 .
[147] B. D. Serot,et al. Relativistic mean-field theory and the high-density nuclear equation of state , 1996, nucl-th/9603037.
[148] Blanchet,et al. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.
[149] Thorne,et al. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.
[150] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[151] Finn,et al. Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.
[152] Flanagan,et al. The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.
[153] Xu,et al. General-relativistic celestial mechanics. II. Translational equations of motion. , 1992, Physical review. D, Particles and fields.
[154] B. Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.
[155] E. Phinney. The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .
[156] M. Livio,et al. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.
[157] T. Ainsworth,et al. The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations , 1987 .
[158] A. Krolak,et al. Coalescing binaries—Probe of the universe , 1987 .
[159] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.
[160] J. H. Taylor,et al. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .
[161] A. Tutukov,et al. Evolution of massive close binaries and formation of neutron stars and black holes , 1976 .
[162] J. Taylor. DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .
[163] N. Itoh. Hydrostatic Equilibrium of Hypothetical Quark Stars , 1970 .
[164] D. Kaup. The klein-gordon geon , 1968 .
[165] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[166] W. Bonnor,et al. Gravitational Radiation , 1958, Nature.
[167] A. Einstein,et al. The Gravitational equations and the problem of motion , 1938 .