GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

B. A. Boom | H. N. Isa | P. B. Covas | M. Fejer | P. Couvares | J. Gair | S. Babak | N. Gehrels | S. Barthelmy | S. Fairhurst | A. Heptonstall | D. Hofman | B. Abbott | E. Huerta | Z. Etienne | M. Fishbach | D. George | Zoheyr Doctor | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | G. Allen | A. Allocca | P. Altin | A. Amato | A. Ananyeva | S. Anderson | W. Anderson | S. Angelova | S. Appert | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | K. AultONeal | C. Austin | A. Ávila-Álvarez | P. Bacon | M. Bader | S. Bae | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | S. Barclay | B. Barish | D. Barker | K. Barkett | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | B. Bécsy | M. Bejger | A. Bell | G. Bergmann | S. Bernuzzi | J. J. Bero | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | N. Bode | M. Boer | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | R. Bork | V. Boschi | S. Bose | K. Bossie | Y. Bouffanais | A. Bozzi | C. Bradaschia | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | T. Callister | E. Calloni | J. Camp | K. Cannon | H. Cao | J. Cao | E. Capocasa | F. Carbognani | S. Caride | M. Carney | Gregorio Carullo | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | P. Cerdá-Durán | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | E. Chase | É. Chassande-Mottin | D. Chatterjee | K. Chatziioannou | B. Cheeseboro | X. Chen | Y. Chen | H.-P. Cheng | H. Chia | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | R. Ciolfi | A. Cirone | F. Clara | J. Clark | P. Clearwater | F. Cleva | C. Cocchieri | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | S. Cooper | P. Corban | I. Cordero-Carrión | K. R. Corley | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | J. Cripe | S. Crowder | T. Cullen | A. Cumming | L. Cunningham | E. Cuoco | G. Dálya | S. Danilishin | S. D’Antonio | K. Danzmann | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | J. Degallaix | S. Deleglise | N. Demos | T. Dent | R. DeSalvo | S. Dhurandhar | M. Díaz | T. Dietrich | F. Donovan | K. Dooley | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | R. Eisenstein | D. Estevez | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | C. Fee | J. Feicht | Á. Fernández-Galiana | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | M. Fitz-Axen | R. Flaminio | M. Fletcher | H. Fong | J. Font | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | L. Gammaitoni | M. Ganija | S. Gaonkar | C. García-Quirós | F. Garufi | B. Gateley | S. Gaudio | G. Gaur | V. Gayathri | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | S. Ghonge | Abhirup Ghosh | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | L. Glover | E. Goetz | R. Goetz | B. Goncharov | G. González | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | E. Gretarsson | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | R. Gustafson | O. Halim | B. Hall | E. Hall | E. Hamilton | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | O. Hannuksela | J. Hanson | T. Hardwick | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | T. Hinderer | D. Hoak | K. Holt | P. Hopkins | C. Horst | J. Hough | E. Howell | A. Hreibi | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | G. Intini | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | J. Junker | C. Kalaghatgi | B. Kamai | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Antier | N. Arnaud | K. Arun | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | V. Brisson | M. Canepa | F. Cavalier | E. Coccia | D. Cohen | M. Davier | R. Essick | V. Frey | P. Gruning | M. Hannam | P. Hello | D. Huet | K. Izumi | N. Johnson-McDaniel | V. Kalogera | T. Adams | P. Addesso | B. Allen | M. Ast | C. Aulbert | J. Batch | S. Bhagwat | C. Biwer | O. Bock | A. Bohé | D. Brown | C. Buchanan | J. Calderón Bustillo | C. Capano | J. Casanueva Diaz | C. Cepeda | J. Chow | A. Colla | T. Dal Canton | M. De Laurentis | W. Del Pozzo | T. Denker | V. Dergachev | R. Derosa | R. De Rosa | L. Di Fiore | M. Di Giovanni | A. Di Lieto | I. Di Palma | V. Dolique | R. Douglas | M. Ducrot | H. Eggenstein | M. Factourovich | H. Fehrmann | K. Giardina | X. Guo | K. Gushwa | M. Hart | E. Houston | N. Indik | S. Jawahar | F. Jiménez-Forteza | W. Johnson | B. Agarwal | C. Dreissigacker | M. Afrough | D. V. Atallah | C. Beer | C. Billman | J. Broida | P. Canizares | T. Chmiel | A. J. Chua | A. K. Chung | C. Cirelli | A. Dasgupta | B. Day | S. De | J. Devenson | D. Finstad | S. Forsyth | E. Fries | J. George | S. Gomes | Y. Hu | E. Ferreira | R. Dudi | W. Ho | E. Gustafson | P. Brady | R. Byer | T. Corbitt | C. F. Da Silva Costa | T. Di Girolamo | S. Di Pace | F. di Renzo | M. Dovale Álvarez | J. G. Gonzalez Castro | R. De Pietri | C. De Rossi | O. de Varona | M. Bailes | P. W. F. Forsyth | Y. Hu | H. Cho | M. di Giovanni | J. Bero | D. Brown | S. Ghosh | A. Bell | K. Corley | S. Anderson | M. Gupta | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | D. Jones | M. Dovale álvarez | A. Ghosh | G. Hammond | K. Holt | J. Brau

[1]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[2]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[3]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[4]  J. Prochaska,et al.  The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source , 2017, 1710.05439.

[5]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[6]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[7]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[8]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[9]  D. Champion,et al.  Formation of Double Neutron Star Systems , 2017, 1706.09438.

[10]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[11]  V. Cardoso,et al.  Publisher's Note: Testing strong-field gravity with tidal Love numbers [Phys. Rev. D 95, 084014 (2017)] , 2017 .

[12]  Anthony L. Piro,et al.  The Fate of Neutron Star Binary Mergers , 2017, 1704.08697.

[13]  T. Dietrich,et al.  Comprehensive comparison of numerical relativity and effective-one-body results to inform improvements in waveform models for binary neutron star systems , 2017, 1702.02053.

[14]  V. Cardoso,et al.  Testing strong-field gravity with tidal Love numbers , 2017, 1701.01116.

[15]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[16]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[17]  Chad R. Galley,et al.  Effective-one-body waveforms for binary neutron stars using surrogate models , 2016, 1610.04742.

[18]  S. Bernuzzi,et al.  Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the mass-ratio , 2016, 1607.06636.

[19]  L. Baiotti,et al.  Binary neutron star mergers: a review of Einstein’s richest laboratory , 2016, Reports on progress in physics. Physical Society.

[20]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[21]  A. Kienlin,et al.  GRB 170817A: Fermi GBM detection. , 2017 .

[22]  Leo Singer,et al.  Ligo-Cbc/Pycbc: O2 Production Release 7 , 2017 .

[23]  C. Palenzuela,et al.  Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale , 2016, 1608.08637.

[24]  A. Taracchini,et al.  Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.

[25]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[26]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[27]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[28]  David Blair,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.

[29]  Michael Purrer,et al.  Fast and accurate inference on gravitational waves from precessing compact binaries , 2016, 1604.08253.

[30]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[31]  P. Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[32]  P. Freire,et al.  Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.

[33]  Measurability of the tidal deformability by gravitational waves from coalescing binary neutron stars , 2016, 1603.01286.

[34]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[35]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[36]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[37]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[38]  Juri Poutanen,et al.  Colloquium: Measuring the neutron star equation of state using x-ray timing , 2016, 1602.01081.

[39]  Lawrence E. Kidder,et al.  Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.

[40]  K. G. Arun,et al.  Ready-to-use post-Newtonian gravitational waveforms for binary black holes with nonprecessing spins: An update , 2016, 1601.05588.

[41]  P. Lasky,et al.  Observationally constraining gravitational wave emission from short gamma-ray burst remnants , 2015, 1512.05368.

[42]  F. Ohme,et al.  Can we measure individual black-hole spins from gravitational-wave observations? , 2015, 1512.04955.

[43]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[44]  R. Pietri,et al.  Modeling equal and unequal mass binary neutron star mergers using public codes , 2015, 1509.08804.

[45]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[46]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[47]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[48]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[49]  J. Lattimer,et al.  The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.

[50]  Y. Wang,et al.  All-sky search for long-duration gravitational wave transients with initial LIGO , 2016 .

[51]  L. Nuttall,et al.  GEO 600 and the GEO-HF upgrade program: successes and challenges , 2015, 1510.00317.

[52]  D. Shoemaker,et al.  Observing gravitational waves from the post-merger phase of binary neutron star coalescence , 2015, 1509.08522.

[53]  P. D'Avanzo,et al.  Short gamma-ray bursts: A review , 2015 .

[54]  A. P. Lundgren,et al.  Improving the data quality of Advanced LIGO based on early engineering run results , 2015, 1508.07316.

[55]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[56]  P. Graff,et al.  PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS , 2015, 1508.05336.

[57]  P. Landry,et al.  Tidal deformation of a slowly rotating material body: External metric , 2015, 1503.07366.

[58]  L. Gualtieri,et al.  Tidal deformations of a spinning compact object , 2015, 1503.07365.

[59]  C. Broeck,et al.  Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars , 2015, 1503.05405.

[60]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[61]  E. Porter,et al.  Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order , 2015, 1501.01529.

[62]  T. Damour,et al.  Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. , 2014, Physical review letters.

[63]  B. Lackey,et al.  Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars , 2014, 1410.8866.

[64]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[65]  A. Ashtekar,et al.  General Relativity and Gravitation: A Centennial Perspective , 2014, 1409.5823.

[66]  S. Gandolfi,et al.  Using Neutron Star Observations to Determine Crust Thicknesses, Moments of Inertia, and Tidal Deformabilities , 2014, 1403.7546.

[67]  Chunglee Kim,et al.  Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate , 2013, 1308.4676.

[68]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[69]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[70]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[71]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[72]  S. Bernuzzi,et al.  Quasiuniversal properties of neutron star mergers , 2014, 1402.6244.

[73]  B. Lackey,et al.  Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.

[74]  N. Yunes,et al.  Love number can be hard to measure , 2014 .

[75]  Marc Favata Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.

[76]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[77]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[78]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[79]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[80]  M. Agathos,et al.  Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors. , 2013, Physical review letters.

[81]  A. Lundgren,et al.  Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis , 2013, 1304.7017.

[82]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[83]  Marco Drago,et al.  Regression of environmental noise in LIGO data , 2013, 1503.07476.

[84]  Keita Kawabe,et al.  Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise , 2013, 1311.6835.

[85]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.

[86]  Chris L. Fryer,et al.  WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.

[87]  Duncan A. Brown,et al.  Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.

[88]  Alexander H. Nitz,et al.  Detecting binary neutron star systems with spin in advanced gravitational-wave detectors , 2012, 1207.6406.

[89]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[90]  T. Damour,et al.  Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.

[91]  R. Adhikari,et al.  Active noise cancellation in a suspended interferometer. , 2011, The Review of scientific instruments.

[92]  M. Smolkin,et al.  Black hole stereotyping: induced gravito-static polarization , 2011, 1110.3764.

[93]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[94]  R. Lynch,et al.  THE TIMING OF NINE GLOBULAR CLUSTER PULSARS , 2011, 1112.2612.

[95]  K. G. Arun,et al.  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms [Erratum [Phys. Rev. D 79, 104023 (2009)]] , 2011 .

[96]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[97]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[98]  L. Lin,et al.  THE SPIN PARAMETER OF UNIFORMLY ROTATING COMPACT STARS , 2010, 1011.3563.

[99]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[100]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[101]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[102]  J. Lattimer,et al.  Tidal Love numbers of neutron and self-bound quark stars , 2010, 1004.5098.

[103]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[104]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[105]  T. Damour,et al.  Effective one body description of tidal effects in inspiralling compact binaries , 2009, 0911.5041.

[106]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[107]  The VIRGO Collaboration , 2010 .

[108]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[109]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[110]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[111]  E. Poisson,et al.  Relativistic theory of tidal Love numbers , 2009, 0906.1366.

[112]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[113]  Masaru Shibata,et al.  Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.

[114]  B. Lackey,et al.  Constraints on a phenomenologically parametrized neutron-star equation of state , 2008, 0812.2163.

[115]  K. G. Arun,et al.  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2008, 0810.5336.

[116]  K. Masters,et al.  Erratum: “Groups of Galaxies in the Two Micron All Sky Redshift Survey” (ApJ, 655, 790 [2007]) , 2008 .

[117]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[118]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[119]  T. Hinderer Tidal Love Numbers of Neutron Stars , 2007, 0711.2420.

[120]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[121]  P. Ajith,et al.  A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.

[122]  A. Buonanno,et al.  Erratum: Higher-order spin effects in the dynamics of compact binaries. II. Radiation field [Phys. Rev. D 74, 104034 (2006)] , 2007 .

[123]  K. Masters,et al.  Groups of Galaxies in the Two Micron All Sky Redshift Survey , 2006, astro-ph/0610732.

[124]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. II. Radiation field , 2006, gr-qc/0605140.

[125]  S. Ransom,et al.  A Radio Pulsar Spinning at 716 Hz , 2006, Science.

[126]  B. Lackey,et al.  Observational constraints on hyperons in neutron stars , 2005, astro-ph/0507312.

[127]  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[128]  L. Gergely,et al.  Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.

[129]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[130]  B. Allen χ2 time-frequency discriminator for gravitational wave detection , 2004, gr-qc/0405045.

[131]  E. Katsavounidis,et al.  Multiresolution techniques for the detection of gravitational-wave bursts , 2004, gr-qc/0412119.

[132]  Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[133]  T. Damour,et al.  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[134]  B. C. Joshi,et al.  The Cosmic Coalescence Rates for Double Neutron Star Binaries , 2003, astro-ph/0312101.

[135]  C. Kim,et al.  An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system , 2003, Nature.

[136]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[137]  Chunglee Kim,et al.  The Probability Distribution Of Binary Pulsar Coalescence Rates. II. Neutron Star-White Dwarf Binaries , 2002, astro-ph/0402162.

[138]  N. Andersson Gravitational waves from instabilities in relativistic stars , 2002, astro-ph/0211057.

[139]  P. Haensel,et al.  A unified equation of state of dense matter and neutron star structure , 2001, astro-ph/0111092.

[140]  T. Damour,et al.  Dimensional regularization of the gravitational interaction of point masses in the ADM formalism , 2001, gr-qc/0105038.

[141]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[142]  M. Shibata,et al.  Simulation of merging binary neutron stars in full general relativity: Γ=2 case , 1999, gr-qc/9911058.

[143]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[144]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[145]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[146]  Robert Grover Brown,et al.  Introduction to random signals and applied Kalman filtering : with MATLAB exercises and solutions , 1996 .

[147]  B. D. Serot,et al.  Relativistic mean-field theory and the high-density nuclear equation of state , 1996, nucl-th/9603037.

[148]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[149]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[150]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[151]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[152]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[153]  Xu,et al.  General-relativistic celestial mechanics. II. Translational equations of motion. , 1992, Physical review. D, Particles and fields.

[154]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[155]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[156]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[157]  T. Ainsworth,et al.  The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations , 1987 .

[158]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[159]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[160]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[161]  A. Tutukov,et al.  Evolution of massive close binaries and formation of neutron stars and black holes , 1976 .

[162]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[163]  N. Itoh Hydrostatic Equilibrium of Hypothetical Quark Stars , 1970 .

[164]  D. Kaup The klein-gordon geon , 1968 .

[165]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[166]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.

[167]  A. Einstein,et al.  The Gravitational equations and the problem of motion , 1938 .