Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy.

The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

[1]  Jon R. Pratt,et al.  Precision and accuracy of thermal calibration of atomic force microscopy cantilevers , 2006 .

[2]  Andreas Engel,et al.  Friction effects on force measurements with an atomic force microscope , 1993 .

[3]  K. V. Van Vliet,et al.  Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors , 2006 .

[4]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[5]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[6]  John E. Sader,et al.  Influence of atomic force microscope cantilever tilt and induced torque on force measurements , 2008 .

[7]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[8]  Mark W. Rutland,et al.  Erratum: “A novel technique for the in situ calibration and measurement of friction with the atomic force microscope” [Rev. Sci. Instrum. 76, 083710 (2005)] , 2006 .

[9]  Thomas Thundat,et al.  Friction effects in the deflection of atomic force microscope cantilevers , 1994 .

[10]  Martyn C. Davies,et al.  Molecular Interactions of Biomolecules with Surface-Engineered Interfaces Using Atomic Force Microscopy and Surface Plasmon Resonance , 1999 .

[11]  B. Bhushan,et al.  Atomic-Scale Friction Measurements Using Friction Force Microscopy. Part 1. General Principles and New Measurement Techniques , 1994 .

[12]  C. Neto,et al.  In Situ Calibration of Colloid Probe Cantilevers in Force Microscopy: Hydrodynamic Drag on a Sphere Approaching a Wall , 2001 .

[13]  Jon R. Pratt,et al.  Review of SI traceable force metrology for instrumented indentation and atomic force microscopy , 2005 .

[14]  T. Vanderlick,et al.  Double Layer Forces over Large Potential Ranges as Measured in an Electrochemical Surface Forces Apparatus , 2001 .

[15]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[16]  John A Kramar,et al.  SI traceable calibration of an instrumented indentation sensor spring constant using electrostatic force. , 2008, The Review of scientific instruments.

[17]  Mark W. Rutland,et al.  A novel technique for the in situ calibration and measurement of friction with the atomic force microscope , 2005 .

[18]  N. Pradeep,et al.  Quantification of the meniscus effect in adhesion force measurements , 2006 .

[19]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[20]  Yon-Kyu Park,et al.  Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC) , 2006 .

[21]  F. MacKintosh,et al.  Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. , 2000, Physical review letters.

[22]  John T Elliott,et al.  The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. , 2007, Biophysical journal.

[23]  K. Higashitani,et al.  Atomic force microscopy study of the specific adhesion between a colloid particle and a living melanoma cell: Effect of the charge and the hydrophobicity of the particle surface. , 2006, Biophysical journal.

[24]  Martin P. Seah,et al.  The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis , 2005 .

[25]  R. Proksch,et al.  Noninvasive determination of optical lever sensitivity in atomic force microscopy , 2006 .

[26]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[27]  P. Kingshott,et al.  Colloid probe AFM investigation of interactions between fibrinogen and PEG-like plasma polymer surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[28]  Richard S Gates,et al.  Precise atomic force microscope cantilever spring constant calibration using a reference cantilever array. , 2007, The Review of scientific instruments.

[29]  John E. Sader,et al.  General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope , 2005 .

[30]  John Hedley,et al.  Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI , 2003, Nanotechnology.

[31]  Jon R. Pratt,et al.  Prototype cantilevers for SI-traceable nanonewton force calibration , 2006 .

[32]  H. Butt,et al.  Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. , 1991, Biophysical journal.

[33]  Hans-Jürgen Butt,et al.  Adhesion and Friction Forces between Spherical Micrometer-Sized Particles , 1999 .

[34]  R. Colton,et al.  Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope , 1989 .

[35]  Jon R. Pratt,et al.  The NIST microforce realization and measurement project , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[36]  Lutz Doering,et al.  Piezoresistive cantilever as portable micro force calibration standard , 2003 .

[37]  Jon R. Pratt,et al.  Progress toward Système International d’Unités traceable force metrology for nanomechanics , 2004 .

[38]  J. Kramar,et al.  Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. , 2007, The Review of scientific instruments.

[39]  M. Rutland,et al.  Thermal calibration of photodiode sensitivity for atomic force microscopy , 2006 .

[40]  Mark W. Rutland,et al.  Dynamic Surface Force Measurement. 2. Friction and the Atomic Force Microscope , 1998 .

[41]  S. Okuma,et al.  A method for determining the spring constant of cantilevers for atomic force microscopy , 1996 .

[42]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[43]  Jason Cleveland,et al.  Finite optical spot size and position corrections in thermal spring constant calibration , 2004 .

[44]  Saltuk B. Aksu,et al.  Calibration of atomic force microscope cantilevers using piezolevers. , 2007, The Review of scientific instruments.