Nouvelle Cuisine for the Computation of the Annihilating Ideal of fs

Let f1,..., fp be polynomials in C[x1,..., xn] and let D = Dn be the n-th Weyl algebra. The annihilating ideal of $f^{s}=f_{1}^{s1}...f_{p}^{sp}$ in D[s]=D[s1,...,sp] is a necessary step for the computation of the Bernstein-Sato ideals of f1,..., fp. We point out experimental differences among the efficiency of the available methods to obtain this annihilating ideal and provide some upper bounds for the complexity of its computation.

[1]  俊則 大阿久,et al.  An algorithm of computing $b$-functions , 1996 .

[2]  José Gómez-Torrecillas,et al.  Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups , 2003 .

[3]  A. Seidenberg Constructions in algebra , 1974 .

[4]  Viktor Levandovskyy,et al.  Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.

[5]  C. Sabbah,et al.  Proximité évanescente. II: Equations fonctionnelles pour plusieurs fonctions analytiques , 1987 .

[6]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[7]  Masayuki Noro,et al.  A Computer Algebra System: Risa/Asir , 2003, Algebra, Geometry, and Software Systems.

[8]  Toshinori Oaku,et al.  An algorithm of computing $b$-functions , 1997 .

[9]  Rouchdi Bahloul Algorithm for Computing Bernstein-Sato Ideals Associated with a Polynomial Mapping , 2001, J. Symb. Comput..

[10]  Nobuki Takayama,et al.  An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation , 1998 .

[11]  Dimitri Yu. Grigor’ev Complexity of Solving Systems of Linear Equations over the Rings of Differential Operators , 1991 .

[12]  Masayuki Noro,et al.  A Computer Algebra System , 2022 .

[13]  J. T. Stafford Module Structure of Weyl Algebras , 1978 .

[14]  Masaki Kashiwara,et al.  B-functions and holonomic systems , 1976 .

[15]  Viktor Levandovskyy,et al.  Using computer algebra system SINGULAR:PLURAL for computations in noncommutative polynomial algebras , 2003, SIGS.

[16]  B. Malgrange,et al.  Le polynome de Bernstein d’une singularite isolee , 1975 .

[17]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .