The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites

Abstract The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.

[1]  N. Yan,et al.  Predicting the elastic modulus of natural fibre reinforced thermoplastics , 2006 .

[2]  M.J.A. van den Oever,et al.  A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres , 2011 .

[3]  A. Eceiza,et al.  The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion , 2015 .

[4]  L. Nicolais,et al.  Effect of processing conditions on mechanical and viscoelastic properties of biocomposites , 2003 .

[5]  Xiaowen Yuan,et al.  Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment , 2012 .

[6]  Xianai Huang,et al.  A novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments , 2014 .

[7]  A. Nechwatal,et al.  Developments in the characterization of natural fibre properties and in the use of natural fibres for composites , 2003 .

[8]  A. Gandini,et al.  Interaction of Silane Coupling Agents with Cellulose , 2002 .

[9]  N. Yan,et al.  Predicting the tensile strength of natural fibre reinforced thermoplastics , 2007 .

[10]  A. Dufresne,et al.  Modification of cellulose fibers with functionalized silanes : Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites , 2005 .

[11]  K. Satyanarayana,et al.  Structure and properties of some vegetable fibres , 1986 .

[12]  J. P. Bell,et al.  Interfacial shear strength and failure modes of interphase-modified graphite-epoxy composites , 1989 .

[13]  H. Zou,et al.  Effect of fiber surface treatments on the properties of short sisal fiber/poly(lactic acid) biocomposites , 2012 .

[14]  Martin P. Ansell,et al.  The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix , 2004 .

[15]  Manjusri Misra,et al.  Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers , 2008 .

[16]  I. Mondragon,et al.  Testing the effect of processing and surface treatment on the interfacial adhesion of single fibres in natural fibre composites , 2011 .

[17]  M. Rong,et al.  The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites , 2001 .

[18]  K. Pickering,et al.  Optimising industrial hemp fibre for composites , 2007 .

[19]  M. Scandola,et al.  Flax fibre–polyester composites , 2004 .

[20]  A. Retegi,et al.  Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling , 2005 .

[21]  Devrim Balköse,et al.  The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites , 2006 .

[22]  T. Chuang,et al.  Analysis of the single-fiber fragmentation test , 1998 .

[23]  F. Jones,et al.  Single fibre fragmentation test for assessing adhesion in fibre reinforced composites , 1998 .

[24]  C. Santulli,et al.  Tensile behavior of New Zealand flax (Phormium tenax) fibers , 2010 .

[25]  H. Hamada,et al.  Mechanical Property of Surface Modified Natural Fiber Reinforced PLA Biocomposites , 2013 .

[26]  D. Hui,et al.  Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites , 2014 .

[27]  Y. Grohens,et al.  Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite , 2011 .

[28]  Alain Dufresne,et al.  Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading , 2007 .

[29]  Seung‐Hwan Lee,et al.  Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent , 2006 .

[30]  Carmen S. R. Freire,et al.  Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach , 2011 .

[31]  K. Satyanarayana,et al.  Mechanical properties of banana fibres (Musa sepientum) , 1983 .

[32]  G. Ziegmann,et al.  Developing a new generation of sisal composite fibres for use in industrial applications , 2014 .

[33]  M. Cran,et al.  Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites , 2014 .

[34]  A. Retegi,et al.  A common strategy to extracting cellulose nanoentities from different plants , 2014 .

[35]  Thomas Heinze,et al.  Comprehensive cellulose chemistry , 1998 .

[36]  J. Benezet,et al.  Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments , 2014 .

[37]  M. Alcock,et al.  A comparative study on natural fibre density measurement , 2009 .

[38]  Hota V. S. GangaRao,et al.  Critical review of recent publications on use of natural composites in infrastructure , 2012 .

[39]  R. Reis,et al.  Hybrid cork-polymer composites containing sisal fibre : morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction , 2013 .

[40]  Jose Maria Kenny,et al.  Flax fiber surface modifications : Effects on fiber physico mechanical and flax/polypropylene interface properties , 2005 .

[41]  J. Youngquist,et al.  Injection molding of polypropylene reinforced with short jute fibers , 1996 .

[42]  K. Satyanarayana,et al.  Structure and properties of some vegetable fibres , 1984 .

[43]  M. Sain,et al.  Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites , 2015 .

[44]  Changquan Calvin Sun,et al.  True density of microcrystalline cellulose. , 2005, Journal of pharmaceutical sciences.

[45]  C. Morvan,et al.  Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour , 2015 .

[46]  S. Phoenix,et al.  Interfacial Shear Strength Studies Using the Single-Filament-Composite Test. I: Experiments on Graphite Fibers in Epoxy , 1989 .

[47]  M. Narkis,et al.  Review of methods for characterization of interfacial fiber-matrix interactions , 1988 .

[48]  Chao He,et al.  Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate) , 2013 .

[49]  K. Sukumaran,et al.  Mechanical behaviour of coir fibres under tensile load , 1981 .