Cournot duopoly when the competitors operate multiple production plants

This article considers a Cournot duopoly under an isoelastic demand function and cost functions with built-in capacity limits. The special feature is that each firm is assumed to operate multiple plants, which can be run alone or in combination. Each firm has two plants with different capacity limits, so each has three cost options, the third being to run both plants, dividing the load according to the principle of equal marginal costs. As a consequence, the marginal cost functions come in three disjoint pieces, so the reaction functions, derived on basis of global profit maximization, may also consist of disjoint pieces. This is reflected in a particular bifurcation structure, due to border-collision bifurcations and to particular basin boundaries, related to the discontinuities. It is shown that stable cycles may coexist, and the non-existence of unstable cycles constitutes a new property. We also compare the coexistent short periodic solutions in terms of the resulting real profits.

[1]  R. D. Theocharis On the Stability of the Cournot Solution on the Oligopoly Problem , 1960 .

[2]  Laura Gardini,et al.  The Hicksian floor-roof model for two regions linked by interregional trade , 2003 .

[3]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[4]  Gian Italo Bischi,et al.  Global Analysis of a Dynamic Duopoly Game with Bounded Rationality , 2000 .

[5]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[6]  L. Gardini,et al.  A Hicksian multiplier-accelerator model with floor determined by capital stock , 2005 .

[7]  Tönu Puu Layout of a New Industry : From Oligopoly to Competition , 2005 .

[8]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[9]  Tönu Puu,et al.  Oligopoly Dynamics : Models and Tools , 2002 .

[10]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[11]  Luigi Montrucchio,et al.  Dynamic complexity in duopoly games , 1986 .

[12]  Tönu Puu,et al.  Chaos in duopoly pricing , 1991 .

[13]  Laura Gardini,et al.  Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves , 2006 .

[14]  Tord Palander,et al.  Konkurrens och marknadsjämvikt vid duopol och oligopol. i. fullkomlig marknad och "autonomt" handlande , 1939 .

[15]  Tönu Puu,et al.  Complex dynamics with three oligopolists , 1996 .

[16]  Michael Schanz,et al.  Multi-parametric bifurcations in a piecewise–linear discontinuous map , 2006 .

[17]  G. Bischi,et al.  Multistability in a dynamic Cournot game with three oligopolists , 1999, Mathematics and Computers in Simulation.

[18]  Gian Italo Bischi,et al.  Equilibrium selection in a nonlinear duopoly game with adaptive expectations , 2001 .

[19]  Laura Gardini,et al.  Tongues of periodicity in a family of two-dimensional discontinuous maps of real Möbius type , 2003 .

[20]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[21]  Michael Kopel,et al.  Simple and complex adjustment dynamics in Cournot duopoly models , 1996 .

[22]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[23]  Laura Gardini,et al.  Global bifurcations in duopoly when the Cournot Point is Destabilized via a Subcritical Neimark bifurcation , 2006, IGTR.

[24]  Cars H. Hommes,et al.  Chaotic dynamics in economic models: some simple case studies , 1991 .

[25]  Richard E. Quandt,et al.  Comments on the Stability of the Cournot Oligipoly Model , 1961 .

[26]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[27]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[28]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[29]  Tönu Puu,et al.  On the stability of Cournot equilibrium when the number of competitors increases , 2008 .

[30]  Cars H. Hommes,et al.  Cycles and chaos in a socialist economy , 1995 .

[31]  Dave Furth,et al.  Stability and instability in oligopoly , 1986 .

[32]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[33]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[34]  Tönu Puu,et al.  Business Cycle Dynamics : Models and Tools , 2006 .

[35]  L. Gardini,et al.  Cournot Duopoly with Kinked Demand According to Palander and Wald , 2002 .

[36]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[37]  H. N. Agiza,et al.  On the Analysis of Stability, Bifurcation, Chaos and Chaos Control of Kopel Map , 1999 .

[38]  Laura Gardini,et al.  The dynamics of a triopoly Cournot game , 2000 .

[39]  Laura Gardini,et al.  Multistability and cyclic attractors in duopoly games , 2000 .

[40]  Cars H. Hommes,et al.  A reconsideration of Hicks' non-linear trade cycle model , 1995 .

[41]  Ali al-Nowaihi,et al.  The stability of the cournot oligopoly model: A reassessment , 1985 .

[42]  Giacomo Bonanno,et al.  Oligopoly Equilibria When Firms Have Local Knowledge of Demand , 1988 .

[43]  Cars H. Hommes,et al.  “Period three to period two” bifurcation for piecewise linear models , 1991 .

[44]  Laura Gardini,et al.  BISTABILITY AND BORDER-COLLISION BIFURCATIONS FOR A FAMILY OF UNIMODAL PIECEWISE SMOOTH MAPS , 2005 .

[45]  Laura Gardini,et al.  Hicks' trade cycle revisited: cycles and bifurcations , 2003, Math. Comput. Simul..

[46]  Franklin M. Fisher,et al.  The Stability of the Cournot Oligopoly Solution: The Effects of Speeds of Adjustment and Increasing Marginal Costs , 1961 .

[47]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .