Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent

AbstractIn this paper, we consider the following semilinear Kirchhoff type equation $$\left\{\begin{array}{ll}-\left(\epsilon^2a + \epsilon b \int \limits_{\mathbb{R}^3}|\nabla u|^2 \right) \triangle {u}+V(x)u = \mu K(x)|u|^{p-1}u + Q(x)|u|^4u, \,\, \mathrm{in}\, \mathbb{R}^3, \\ u \in H^1(\mathbb{R}^3), \,\, u > 0,\end{array}\right.$$-ϵ2a+ϵb∫R3|∇u|2▵u+V(x)u=μK(x)|u|p-1u+Q(x)|u|4u,inR3,u∈H1(R3),u>0,where $${\epsilon > 0}$$ϵ>0 is a small parameter, $${p \in [3,5)}$$p∈[3,5), a, b are positive constants, μ > 0 is a parameter, and the nonlinear growth of |u|4u reaches the Sobolev critical exponent since 2* = 6 for three spatial dimensions. We prove the existence of a positive ground state solution $${u_\epsilon}$$uϵ with exponential decay at infinity for μ > 0 and $${\epsilon}$$ϵ sufficiently small under some suitable conditions on the nonnegative functions V, K and Q. Moreover, $${u_\epsilon}$$uϵ concentrates around a global minimum point of V as $${\epsilon \rightarrow 0^+}$$ϵ→0+. The methods used here are based on the concentration-compactness principle of Lions.

[1]  Fukun Zhao,et al.  Positive solutions for Schrödinger–Poisson equations with a critical exponent , 2009 .

[2]  Giovany M. Figueiredo,et al.  Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth , 2012, Differential and Integral Equations.

[3]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[4]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[5]  Hongyu Ye,et al.  Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3 , 2014 .

[6]  W. Ni,et al.  On the existence of positive entire solutions of a semilinear elliptic equation , 1986 .

[7]  Yueh-Cheng Kuo,et al.  The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions , 2011 .

[8]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[9]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[10]  Haim Brezis,et al.  Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents Haim Brezis , 2022 .

[11]  Fuyi Li,et al.  Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior , 2014 .

[12]  G. Figueiredo,et al.  Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method , 2013, 1305.0955.

[13]  Lixin Tian,et al.  Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth , 2012 .

[14]  Antonio Azzollini,et al.  The elliptic Kirchhoff equation in $\R^N$ perturbed by a local nonlinearity , 2010, 1001.0269.

[15]  I. Ekeland On the variational principle , 1974 .

[16]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[17]  Li Gongbao,et al.  Existence of positive solutions for nonlinear Kirchhoff type problems in R3 with critical Sobolev exponent , 2013, 1305.6777.

[18]  G. M. D. Penha Contemporary developments in continuum mechanics and partial differential equations , 1978 .

[19]  Xian Wu,et al.  Infinitely many radial solutions for Kirchhoff-type problems in RN , 2010 .

[20]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[21]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[22]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[23]  Kanishka Perera,et al.  Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , 2006 .

[24]  Giovany M. Figueiredo,et al.  Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument , 2013 .

[25]  Giovany M. Figueiredo,et al.  ON A CLASS OF NONLOCAL ELLIPTIC PROBLEMS WITH CRITICAL GROWTH , 2010 .

[26]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[27]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[28]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[29]  Yi He,et al.  Concentrating Bound States for Kirchhoff Type Problems in ℝ3 Involving Critical Sobolev Exponents , 2013, 1306.0122.

[30]  Giovany M. Figueiredo,et al.  Nonlinear perturbations of a periodic Kirchhoff equation in RN , 2012 .

[31]  Fuyi Li,et al.  Existence of a positive solution to Kirchhoff type problems without compactness conditions , 2012 .

[32]  Antonio Azzollini,et al.  The elliptic Kirchhoff equation in $\mathbb R^N$ perturbed by a local nonlinearity , 2012, Differential and Integral Equations.

[33]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[34]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[35]  Shaoyun Shi,et al.  Soliton solutions to Kirchhoff type problems involving the critical growth in RN , 2013 .

[36]  E. Rocha,et al.  Positive and sign-changing solutions of a Schrödinger–Poisson system involving a critical nonlinearity , 2013 .

[37]  Jianjun Nie,et al.  Existence and multiplicity of non-trivial solutions for Schrodinger-Kirchhoff-type equations with radial potential , 2012 .

[38]  S. Cingolani,et al.  Multiple Positive Solutions to Nonlinear Schrödinger Equations with Competing Potential Functions , 2000 .

[39]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[40]  Shangjiang Guo,et al.  Positive solutions for asymptotically linear Schrödinger–Kirchhoff-type equations , 2014 .

[41]  Gongbao Li Some properties of weak solutions of nonlinear scalar field equations , 1990 .

[42]  Xian Wu,et al.  Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN☆ , 2011 .

[43]  W. Zou,et al.  Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth , 2012 .

[44]  Bitao Cheng,et al.  New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems , 2012 .

[45]  Anmin Mao,et al.  Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition , 2009 .

[46]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .