Cellular Wave Computing in Nanoscale via Million Processor Chips
暂无分享,去创建一个
[1] Leon O. Chua,et al. Cellular Neural Networks and Visual Computing , 2002 .
[2] István Szatmári,et al. Object comparison using PDE‐based wave metric on cellular neural networks , 2006, Int. J. Circuit Theory Appl..
[3] Servando Espejo,et al. Ultra-high frame rate focal plane image sensor and processor , 2002 .
[4] William Aspray,et al. Papers of John Von Neumann on computing and computer theory, Vol 12 , 1986 .
[5] Wolfgang Porod,et al. Bio‐Inspired Nano‐Sensor‐Enhanced CNN Visual Computer , 2004, Annals of the New York Academy of Sciences.
[6] Ákos Zarándy,et al. Cellular multiadaptive analogic architecture: a computational framework for UAV applications , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.
[7] Tamás Roska,et al. The CNN universal machine: an analogic array computer , 1993 .
[8] Tamás Roska,et al. Circuits, computers, and beyond Boolean logic , 2007, Int. J. Circuit Theory Appl..
[9] Ronald Tetzlaff,et al. Automated detection of a preseizure state: non‐linear EEG analysis in epilepsy by Cellular Nonlinear Networks and Volterra systems , 2006, Int. J. Circuit Theory Appl..
[10] István Petrás,et al. Implementing the Multilayer Retinal Model on the Complex-Cell CNN-um Chip Prototype , 2004, Int. J. Bifurc. Chaos.
[11] Tamás Roska. Computational And Computer Complexity Of Analogic Cellular Wave Computers , 2003, J. Circuits Syst. Comput..
[12] Janne Roos. Speed-up and performance evaluation of piecewise-linear DC analysis , 2007, Int. J. Circuit Theory Appl..
[13] M. Ercsey-Ravasz,et al. Stochastic simulations on the cellular wave computers , 2006 .
[14] Ángel Rodríguez-Vázquez,et al. ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.
[15] T. Roska,et al. Cellular wave computers for brain-like spatial-temporal sensory computing , 2005, IEEE Circuits and Systems Magazine.
[16] Tamás Roska,et al. A CNN framework for modeling parallel processing in a mammalian retina , 2002, Int. J. Circuit Theory Appl..
[17] Philipp Fischer,et al. Automated detection of a preseizure state: non-linear EEG analysis in epilepsy by Cellular Nonlinear Networks and Volterra systems: Research Articles , 2006 .
[18] Tamás Roska,et al. Function‐in‐layout: a demonstration with bio‐inspired hyperacuity chip , 2007, Int. J. Circuit Theory Appl..
[19] A. Turing. The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
[20] A. Zarandy,et al. Bi-i: a standalone ultra high speed cellular vision system , 2005, IEEE Circuits and Systems Magazine.
[21] Zoltán Fodróczi,et al. Computational auditory scene analysis in cellular wave computing framework , 2006, Int. J. Circuit Theory Appl..
[22] Tamás Roska,et al. Cellular wave computers for nanotera- scale technology---beyond boolean, spatial-temporal logic in million processor devices , 2007 .
[23] Johan A. K. Suykens,et al. Learning of spatiotemporal behaviour in cellular neural networks , 2006, Int. J. Circuit Theory Appl..
[24] F. Werblin,et al. Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.