Mechanisms of Fast Ripples in the Hippocampus

Hippocampal fast ripples (FRs) have been associated with seizure onset in both human and experimental epilepsy. To characterize the mechanisms underlying FR oscillations (200-600 Hz), we studied activity of single neurons and neuronal networks in rat hippocampal slices in vitro. The correlation between the action potentials of bursting pyramidal cells and local field potential oscillations suggests that synchronous onset of action potential bursts and similar intrinsic firing patterns among local neurons are both necessary conditions for FR oscillations. Increasing the fidelity of individual pyramidal cell spike train timing by blocking accommodation dramatically increased FR amplitude, whereas blockade of potassium conductances decreased the fidelity of action potential timing in individual pyramidal cell action potential bursts and decreased FR amplitude. Blockade of ionotropic glutamate receptors desynchronized onset of action potential bursts in individual pyramidal cells and abolished fast ripples. Thus, synchronous burst onset mediated by recurrent excitatory synaptic transmission and similar intrinsic spike timing mechanisms in neighboring pyramidal cells are necessary conditions for FR oscillations within the hippocampal network.

[1]  C. Wilson,et al.  Electrophysiologic Analysis of a Chronic Seizure Model After Unilateral Hippocampal KA Injection , 1999, Epilepsia.

[2]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[3]  D. McCormick Membrane Properties and Neurotransmitter Actions , 2004 .

[4]  R. Miles,et al.  Contributions of intrinsic and synaptic activities to the generation of neuronal discharges in in vitro hippocampus , 2000, The Journal of physiology.

[5]  R. Nicoll,et al.  Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. , 1986, The Journal of physiology.

[6]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[7]  T. Bliss,et al.  Unit analysis of hippocampal population spikes , 2004, Experimental Brain Research.

[8]  R. Fisher,et al.  High-frequency EEG activity at the start of seizures. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[9]  K. Staley,et al.  Transition from Interictal to Ictal Activity in Limbic Networks In Vitro , 2003, The Journal of Neuroscience.

[10]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[11]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[12]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[13]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[15]  G L Gerstein,et al.  Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. , 1988, Journal of neurophysiology.

[16]  Timothy A. Pedley,et al.  Interictal Epileptiform Discharges: Discriminating Characteristics and Clinical Correlations , 1980 .

[17]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[18]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[19]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[20]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[21]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[22]  R. D. Pinto,et al.  Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. , 2003, Journal of neurophysiology.

[23]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[24]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[25]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[26]  Roger D. Traub,et al.  The role of electrical signaling via gap junctions in the generation of fast network oscillations , 2003, Brain Research Bulletin.

[27]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[28]  J. Jefferys,et al.  Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. , 2003, Journal of neurophysiology.

[29]  David K. Bilkey,et al.  Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells , 1990, Brain Research.

[30]  N Spruston,et al.  Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. , 2000, Journal of neurophysiology.

[31]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.

[32]  Charles L. Wilson,et al.  Local Generation of Fast Ripples in Epileptic Brain , 2002, The Journal of Neuroscience.

[33]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[35]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[36]  K. Staley,et al.  Excitatory Actions of Endogenously Released GABA Contribute to Initiation of Ictal Epileptiform Activity in the Developing Hippocampus , 2003, The Journal of Neuroscience.