Quantum remote sensing with asymmetric information gain

Typically, the aim of quantum metrology is to sense target fields with high precision utilizing quantum properties. Unlike the typical aim, in this paper, we use quantum properties for adding a new functionality to quantum sensors. More concretely, we propose a delegated quantum sensor (a client-server model) with security inbuilt. Suppose that a client wants to measure some target fields with high precision, but he/she does not have any high-precision sensor. This leads the client to delegate the sensing to a remote server who possesses a high-precision sensor. The client gives the server instructions about how to control the sensor. The server lets the sensor interact with the target fields in accordance with the instructions, and then sends the sensing measurement results to the client. In this case, since the server knows the control process and readout results of the sensor, the information of the target fields is available not only for the client but also for the server. We show that, by using an entanglement between the client and the server, an asymmetric information gain is possible so that only the client can obtain the sufficient information of the target fields. In our scheme, the server generates the entanglement between a solid state system (that can interact with the target fields) and a photon, and sends the photon to the client. On the other hand, the client is required to possess linear optics elements only including wave plates, polarizing beam splitters, and single-photon detectors. Our scheme is feasible with the current technology, and our results pave the way for a novel application of quantum metrology.

[1]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[2]  Jason Twamley,et al.  Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet , 2018 .

[3]  Jianyong Chen,et al.  High-dimensional cryptographic quantum parameter estimation , 2017, Quantum Information Processing.

[4]  Paul A Knott,et al.  Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.

[5]  Zachary Eldredge,et al.  Optimal and secure measurement protocols for quantum sensor networks. , 2016, Physical review. A.

[6]  Simon Benjamin,et al.  Magnetic field sensing with quantum error detection under the effect of energy relaxation , 2016, 1611.10264.

[7]  M. Murao,et al.  Projective measurement of energy on an ensemble of qubits with unknown frequencies , 2016, 1611.03994.

[8]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[9]  M. Markham,et al.  Quantum Metrology Enhanced by Repetitive Quantum Error Correction. , 2016, Physical review letters.

[10]  Philip Walther,et al.  Demonstration of measurement-only blind quantum computing , 2016, 1601.02451.

[11]  Keisuke Fujii,et al.  Blind quantum computation over a collective-noise channel , 2016 .

[12]  Simon J. Devitt,et al.  Photonic Quantum Networks formed from NV− centers , 2014, Scientific Reports.

[13]  Marco Tomamichel,et al.  A largely self-contained and complete security proof for quantum key distribution , 2015, 1506.08458.

[14]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.

[15]  W. Munro,et al.  Improving the coherence time of a quantum system via a coupling to a short-lived system. , 2015, Physical Review Letters.

[16]  M. Fleischhauer,et al.  Interfacing microwave qubits and optical photons via spin ensembles , 2015, 1501.05860.

[17]  Dorit Aharonov,et al.  Quantum Error-Correction-Enhanced Magnetometer Overcoming the Limit Imposed by Relaxation. , 2015, Physical review letters.

[18]  Precision-guaranteed quantum metrology , 2014, 1407.8065.

[19]  Akihito Soeda,et al.  Quantum algorithm for universal implementation of the projective measurement of energy. , 2013, Physical review letters.

[20]  W. Munro,et al.  Observation of dark states in a superconductor diamond quantum hybrid system , 2014, Nature Communications.

[21]  Giovanna Morigi,et al.  Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. , 2014, Physical review letters.

[22]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[23]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[24]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[25]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[26]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[27]  W. Munro,et al.  Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. , 2013, Physical review letters.

[28]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[29]  L. Zhang,et al.  Direct and full-scale experimental verifications towards ground–satellite quantum key distribution , 2012, Nature Photonics.

[30]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[31]  Daniel A. Lidar,et al.  Quantum Error Correction: Applications and implementations , 2013 .

[32]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[33]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[34]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[35]  W. Marsden I and J , 2012 .

[36]  J Wrachtrup,et al.  High-dynamic-range magnetometry with a single nuclear spin in diamond. , 2012, Nature nanotechnology.

[37]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[38]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[39]  A. Yacoby,et al.  A robust, scanning quantum system for nanoscale sensing and imaging , 2011, 1108.4437.

[40]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[41]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[42]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[43]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[44]  Yongmin Li,et al.  Efficient quantum memory for light , 2010, Nature.

[45]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[46]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[47]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[48]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[49]  Aurélien Drezet,et al.  Near-field optical microscopy with a nanodiamond-based single-photon tip. , 2009, Optics express.

[50]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.

[51]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[52]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[53]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[54]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[55]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[56]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[57]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[58]  P. Perinotti,et al.  Secret quantum communication of a reference frame. , 2006, Physical review letters.

[59]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[60]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[61]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[62]  P. Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2004, quant-ph/0408040.

[63]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[64]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[65]  G. Milburn,et al.  Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  Alexander P. Nizovtsev,et al.  Single spin states in a defect center resolved by optical spectroscopy , 2002 .

[67]  S. Lloyd,et al.  Quantum cryptographic ranging , 2001, quant-ph/0112079.

[68]  S. Lloyd,et al.  Positioning and clock synchronization through entanglement , 2001, quant-ph/0107140.

[69]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[70]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[71]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[72]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[73]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[74]  M. Henini Properties and growth of diamond , 1998 .

[75]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[76]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[77]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[78]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[79]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[80]  I. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1996, quant-ph/9610001.

[81]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[82]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[83]  Inspec,et al.  Properties and growth of diamond , 1994 .

[84]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[85]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[86]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[87]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[88]  W. Hoeffding Probability inequalities for sum of bounded random variables , 1963 .

[89]  O. William Journal Of The American Statistical Association V-28 , 1932 .