Multi-method Discourse Analysis of Twitter Communication: A Comparison of Two Global Political Issues

This chapter presents a multi-method discourse analytical approach to analyse Twitter communication on two political issues of global concern: environmental policy/climate change and internet governance/net neutrality. Their corpus is compiled from Twitter messages containing #NetNeutrality or #ClimateChange which the authors gathered between January and March 2015. First, they map and compare the geographical landscapes of the two policy fields by using geolocation information from the Twitter API and the Data Science Toolkit. Step 2 consists in a comparative network analysis defining Twitter users as nodes and Retweets (RT) and mentions (@) as links. Finally, in a third step, the authors apply keyword analysis to identify discursive patterns. Combining these three methods allows the authors to assess the degree of transnationalisation in the two fields.

[1]  D. Biber,et al.  The Cambridge handbook of English corpus linguistics , 2015 .

[2]  A. Bruns,et al.  #Ausvotes: How twitter covered the 2010 Australian federal election , 2011 .

[3]  D. Ruths,et al.  Social media for large studies of behavior , 2014, Science.

[4]  Tony McEnery,et al.  Who Benefits When Discourse Gets Democratised? Analysing a Twitter Corpus around the British Benefits Street Debate , 2015 .

[5]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[6]  A. Chadwick The Hybrid Media System: Politics and Power , 2013 .

[7]  Stephen Jeffares,et al.  Interpreting Hashtag Politics: Policy Ideas in an Era of Social Media, by S. Jeffares , 2014, Inf. Polity.

[8]  Marcus Müller Sprachliches Rollenverhalten: Korpuspragmatische Studien zu divergenten Kontextualisierungen in Mündlichkeit und Schriftlichkeit , 2015 .

[9]  Tony McEnery,et al.  Press and social media reaction to ideologically inspired murder: The case of Lee Rigby , 2015 .

[10]  L. Anthony,et al.  AntConc: design and development of a freeware corpus analysis toolkit for the technical writing classroom , 2005, IPCC 2005. Proceedings. International Professional Communication Conference, 2005..

[11]  W. R. Neuman,et al.  The Dynamics of Public Attention: Agenda‐Setting Theory Meets Big Data , 2014 .

[12]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[13]  Maeve Duggan,et al.  Social Media Update 2016 , 2016 .

[14]  Marcel Hanegraaff Transnational Advocacy over Time: Business and NGO Mobilization at UN Climate Summits , 2015, Global Environmental Politics.

[15]  R. Fasold The sociolinguistics of language , 1984 .

[16]  Deen Freelon,et al.  Of big birds and bayonets: hybrid Twitter interactivity in the 2012 Presidential debates , 2015 .

[17]  M. Scott In Search of a Bad Reference Corpus , 2009 .

[18]  D. Boyd,et al.  CRITICAL QUESTIONS FOR BIG DATA , 2012 .

[19]  David Held,et al.  Democracy and Globalization , 1991, Global Governance: A Review of Multilateralism and International Organizations.

[20]  S. Jeffares Interpreting Hashtag Politics , 2014 .

[21]  N. Janich Felder, Ekkehard/Müller, Marcus (Hrsg.) (2009): Wissen durch Sprache. Theorie, Praxis und Erkenntnisinteresse des Forschungsnetzwerks „Sprache und Wissen“ , 2017 .