Reducing complexes in multidimensional persistent homology theory
暂无分享,去创建一个
[1] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[2] M. Ferri,et al. One-dimensional reduction of multidimensional persistent homology , 2007, math/0702713.
[3] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[4] M. Ferri,et al. Betti numbers in multidimensional persistent homology are stable functions , 2013 .
[5] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2007, SCG '07.
[6] 坂上 貴之,et al. 書評「T. Kaczynski, K. Mischaikow, and M. Mrozek:Computational Homology (Applied Mathematical Sciences 157, Springer-Verlag, 2004 年, 480 ページ)」 , 2005 .
[7] 貴之 坂上. T. Kaczynski, K. Mischaikow, M. Mrozek, Computational Homology, Springer Verlag, NY, 2004 , 2005 .
[8] M. Mrozek,et al. Homology Computation by Reduction of Chain Complexes , 1998 .
[9] R. Ho. Algebraic Topology , 2022 .
[10] Afra Zomorodian,et al. Computing Multidimensional Persistence , 2009, J. Comput. Geom..
[11] Walter G. Kropatsch,et al. A Global Method for Reducing Multidimensional Size Graphs , 2011, GbRPR.
[12] R. Forman. Morse Theory for Cell Complexes , 1998 .
[13] Henry King,et al. Generating Discrete Morse Functions from Point Data , 2005, Exp. Math..
[14] Olaf Delgado-Friedrichs,et al. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] A. B. Kahn,et al. Topological sorting of large networks , 1962, CACM.
[16] Peter John Wood,et al. Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .
[17] Marc E. Pfetsch,et al. Computing Optimal Morse Matchings , 2006, SIAM J. Discret. Math..
[18] Konstantin Mischaikow,et al. Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..
[19] Patrizio Frosini,et al. On the use of size functions for shape analysis , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.
[20] 坂上 貴之. 書評 Computational Homology , 2005 .
[21] Pawel Dlotko,et al. Computing homology and persistent homology using iterated Morse decomposition , 2012, ArXiv.
[22] Daniela Giorgi,et al. Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.
[23] Marc Ethier,et al. Comparison of persistent homologies for vector functions: From continuous to discrete and back , 2012, Comput. Math. Appl..
[24] Patrizio Frosini,et al. Measuring shapes by size functions , 1992, Other Conferences.
[25] R. Forman. A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .
[26] P. Dlotko,et al. SIMPLIFICATION OF COMPLEXES FOR PERSISTENT HOMOLOGY COMPUTATIONS , 2013, 1304.8074.
[27] Leonidas J. Guibas,et al. Persistence barcodes for shapes , 2004, SGP '04.
[28] Marian Mrozek,et al. Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..
[29] Reiner Creutzburg,et al. Virtual tutorials, Wikipedia books, and multimedia-based teaching for blended learning support in a course on algorithms and data structures , 2014, Electronic Imaging.
[30] Claudia Landi,et al. Persistent homology and partial similarity of shapes , 2012, Pattern Recognit. Lett..