Auckland Volcanic Field magmatism, volcanism, and hazard: a review

ABSTRACT Auckland Volcanic Field (AVF) is a basaltic intraplate volcanic field in North Island, New Zealand, upon which >1.6 million people live. Seismic velocity tomography and geochemistry suggest a primary mantle source region at a depth of 70–90 km. Geochemical analysis indicates a range of magma compositions, and that melts ascend with little crustal interaction. Eruptions generally began with a phreatomagmatic phase forming maar and tuff rings with tephra fall, base surges, and ballistic projectiles as the main hazards. Subsequent magmatic phases formed scoria cones, and sometimes produced lava flows. Ages of 47 of the 53 volcanic centres reveal that the AVF first erupted ∼193 ka, and last erupted ∼500 yrs. BP. These geochronological constraints indicate repose periods ≤0.1–13 kyr, which have decreased since ∼60 ka. From known geological and exposure information, and using an interdisciplinary approach, eight future eruption scenarios have been developed for planning processes. Outstanding questions for the AVF concern the cause of mantle melting, the structure of the underlying lithosphere, magma ascent rates, controls on repose periods and eruptive volumes. Answering these questions may improve our understanding of warning periods, monitoring strategies, spatiotemporal risk profiles, and socio-economic impacts of volcanism on New Zealand’s largest city.

[1]  B. Simons,et al.  The DEVORA Borehole Database: Status Update and Manual , 2020 .

[2]  Thomas M. Wilson,et al.  Developing a suite of multi-hazard volcanic eruption scenarios using an interdisciplinary approach , 2020 .

[3]  J. White,et al.  The Dunedin Volcanic Group and a revised model for Zealandia's alkaline intraplate volcanism , 2020 .

[4]  N. Mortimer,et al.  Volcanoes of Zealandia and the Southwest Pacific , 2020 .

[5]  G. Turner,et al.  The heating of substrates beneath basaltic lava flows , 2019, Bulletin of Volcanology.

[6]  Steven A. Smith,et al.  Element and Sr–O isotope redistribution across a plate boundary-scale crustal serpentinite mélange shear zone, and implications for the slab-mantle interface , 2019, Earth and Planetary Science Letters.

[7]  P. S. Ang Spatial probabilities of eruption scenarios : a case study of the Auckland Volcanic Field, New Zealand , 2019 .

[8]  K. Bambery,et al.  Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand , 2018, Earth and Planetary Science Letters.

[9]  C. Fearnley,et al.  Volcano alert level systems: managing the challenges of effective volcanic crisis communication , 2018, Bulletin of Volcanology.

[10]  N. Horspool,et al.  Evaluating the impacts of volcanic eruptions using RiskScape , 2017, Journal of Applied Volcanology.

[11]  G. Leonard,et al.  High-precision 40Ar/39Ar dating of Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations , 2017 .

[12]  T. Wilson,et al.  Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments , 2017 .

[13]  S. Cronin,et al.  The spatial and temporal ‘cost’ of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand , 2017, Bulletin of Volcanology.

[14]  G. Leonard,et al.  Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand , 2017, Bulletin of Volcanology.

[15]  K. van Wijk,et al.  Probing the subsurface of the Auckland Volcanic Field with ambient seismic noise , 2017 .

[16]  T. Wilson,et al.  Investigating the consequences of urban volcanism using a scenario approach II: Insights into transportation network damage and functionality , 2017 .

[17]  D. Pearson,et al.  Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources , 2017 .

[18]  Alistair J. Davies,et al.  Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand , 2017 .

[19]  M. Bebbington,et al.  Forecasting transitions in monogenetic eruptions using the geologic record , 2017 .

[20]  L. Ailleres,et al.  Controls on volcanism at intraplate basaltic volcanic fields , 2017 .

[21]  T. Wilson,et al.  A model to assess tephra clean-up requirements in urban environments , 2017, Journal of Applied Volcanology.

[22]  G. Leonard,et al.  Os isotopic constraints on crustal contamination in Auckland Volcanic Field basalts, New Zealand , 2016 .

[23]  M. Ripepe,et al.  Tracking dynamics of magma migration in open-conduit systems , 2016, Bulletin of Volcanology.

[24]  A. Cooper,et al.  Peridotitic Lithosphere Metasomatized by Volatile-bearing Melts, and its Association with Intraplate Alkaline HIMU-like Magmatism , 2016 .

[25]  I. Smith,et al.  Interpreting chemical compositions of small scale basaltic systems: A review , 2016 .

[26]  V. Bennett,et al.  Rapid Cenozoic ingrowth of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: Distinguishing source from process , 2016 .

[27]  J. Lindsay,et al.  Long-lived shield volcanism within a monogenetic basaltic field: The conundrum of Rangitoto volcano, New Zealand , 2016 .

[28]  J. White,et al.  Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA , 2016, Bulletin of Volcanology.

[29]  E. Cañón‐Tapia Reappraisal of the significance of volcanic fields , 2016 .

[30]  M. Bebbington,et al.  Sensitivity to volcanic field boundary , 2015, Journal of Applied Volcanology.

[31]  J. Lindsay,et al.  Shallow-seated explosions in the construction of the Motukorea tuff ring (Auckland, New Zealand): Evidence from lithic and sedimentary characteristics , 2015 .

[32]  G. Leonard,et al.  Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand , 2015 .

[33]  J. Lindsay,et al.  Mantle heterogeneity controls on small-volume basaltic volcanism , 2015 .

[34]  JM Lindsay,et al.  Excavation of buried Dun Mountain–Maitai terrane ophiolite by volcanoes of the Auckland Volcanic field, New Zealand , 2015 .

[35]  R. Maas,et al.  Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand , 2015 .

[36]  T. Wilson,et al.  Training in crisis communication and volcanic eruption forecasting: design and evaluation of an authentic role-play simulation , 2015, Journal of Applied Volcanology.

[37]  D. Johnston,et al.  The genesis of volcanic risk assessment for the Auckland engineering lifelines project: 1996–2000 , 2015, Journal of Applied Volcanology.

[38]  J. Lindsay,et al.  Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand , 2015, Bulletin of Volcanology.

[39]  S. Cronin,et al.  Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea , 2015, Bulletin of Volcanology.

[40]  Patrick L. Whelley,et al.  The frequency of explosive volcanic eruptions in Southeast Asia , 2015, Bulletin of Volcanology.

[41]  N. Rawlinson,et al.  On the origin of recent intraplate volcanism in Australia , 2014 .

[42]  C. Negro,et al.  Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment , 2014, Bulletin of Volcanology.

[43]  T. Wilson,et al.  Volcanic hazard impacts to critical infrastructure: A review , 2014 .

[44]  J. Procter,et al.  Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand , 2014 .

[45]  J. Palin,et al.  Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU‐like intraplate magmatism , 2014 .

[46]  J. van Hunen,et al.  Dynamics of lithospheric thinning and mantle melting by edge‐driven convection: Application to Moroccan Atlas mountains , 2014 .

[47]  J. Lindsay,et al.  A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand , 2014 .

[48]  M. Gahegan,et al.  Evacuation planning in the Auckland Volcanic Field, New Zealand: a spatio-temporal approach for emergency management and transportation network decisions , 2014, Journal of Applied Volcanology.

[49]  A. Cooper,et al.  Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle , 2014, Contributions to Mineralogy and Petrology.

[50]  J. Lindsay,et al.  Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand , 2013, Bulletin of Volcanology.

[51]  J. Lindsay,et al.  A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand , 2013 .

[52]  J. Lindsay,et al.  Asthenospheric Control of Melting Processes in a Monogenetic Basaltic System: a Case Study of the Auckland Volcanic Field, New Zealand , 2013 .

[53]  M. Bebbington,et al.  Age, distance, and geochemical evolution within a monogenetic volcanic field: Analyzing patterns in the Auckland Volcanic Field eruption sequence , 2013 .

[54]  J. Rowland,et al.  Spatial distribution and alignments of volcanic centers: Clues to the formation of monogenetic volcanic fields , 2013 .

[55]  G. Carrasco‐Núñez,et al.  Active sinking at the bottom of the Rincón de Parangueo Maar (Guanajuato, México) and its probable relation with subsidence faults at Salamanca and Celaya , 2013 .

[56]  J. Lindsay,et al.  The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand , 2012 .

[57]  JM Lindsay,et al.  Post-Miocene faults in Auckland: insights from borehole and topographic analysis , 2012 .

[58]  S. Cronin,et al.  Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand , 2012, Bulletin of Volcanology.

[59]  Pilar Villamor,et al.  National Seismic Hazard Model for New Zealand: 2010 Update , 2012 .

[60]  R. Sharma,et al.  Cenozoic volcanism in the Sierra Nevada and Walker Lane, California, and a new model for lithosphere degradation , 2012 .

[61]  J. Lindsay,et al.  B.W. Hayward, G. Murdoch, G. Maitland: Volcanoes of Auckland—the essential guide , 2012, Bulletin of Volcanology.

[62]  G. Leonard,et al.  Age of the Auckland Volcanic Field: a review of existing data , 2011 .

[63]  Douglas Paton,et al.  The Communication of Uncertain Scientific Advice During Natural Hazard Events , 2011 .

[64]  Paul Wessel,et al.  Materials for : Patterns of intraplate volcanism controlled by asthenospheric shear , 2011 .

[65]  J. Lindsay,et al.  Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand , 2011 .

[66]  I. Smith,et al.  Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand , 2011 .

[67]  Stephen Bannister,et al.  Establishing a Versatile 3-D Seismic Velocity Model for New Zealand , 2010 .

[68]  C. Locke,et al.  The Auckland volcanic field, New Zealand: Geophysical evidence for structural and spatio-temporal relationships , 2010 .

[69]  Warwick D. Smith,et al.  Volcanic ashfall in New Zealand – probabilistic hazard modelling for multiple sources , 2010 .

[70]  Warner Marzocchi,et al.  Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’ , 2010 .

[71]  Eugene I. Smith,et al.  Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism , 2009 .

[72]  Catherine Molloy,et al.  Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: Implications for hazards in the Auckland volcanic field , 2009 .

[73]  D. Brunsdon,et al.  Lifeline Vulnerability to Volcanic Eruption: Learnings from a National Simulation Exercise , 2009 .

[74]  Wei-Jou Su,et al.  Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet , 2009 .

[75]  B. Davy Marine seismic reflection profiles from the Waitemata‐Whangaparoa region, Auckland , 2008 .

[76]  B. Houghton,et al.  Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand , 2008 .

[77]  B. Singer,et al.  Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand , 2007 .

[78]  R. George,et al.  U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia , 2007 .

[79]  G. Valentine,et al.  Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA) , 2007 .

[80]  Stephen Bannister,et al.  Ambient noise Rayleigh wave tomography of New Zealand , 2007 .

[81]  Craig Miller,et al.  Monitoring seismic precursors to an eruption from the Auckland Volcanic Field, New Zealand , 2007 .

[82]  Michel Campillo,et al.  3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations , 2007 .

[83]  K. B. Spörli,et al.  Delineation of a large ultramafic massif embedded within a major SW Pacific suture using gravity methods , 2006 .

[84]  N. Horspool,et al.  Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves , 2006, Geophysical Journal International.

[85]  D. Garbe‐Schönberg,et al.  Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal , 2006 .

[86]  C. Bonadonna,et al.  Proximal tephra hazards: Recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand , 2006 .

[87]  J. Eccles,et al.  Aeromagnetic imaging of the Dun Mountain Ophiolite Belt in northern New Zealand: insight into the fine structure of a major SW Pacific terrane suture , 2005, Journal of the Geological Society.

[88]  A. Hofmann,et al.  FOZO, HIMU, and the rest of the mantle zoo , 2005 .

[89]  R. Blong,et al.  Volcanic risk ranking for Auckland, New Zealand. II: Hazard consequences and risk calculation , 2005 .

[90]  K. Mcaneney,et al.  Probabilistic Assessment of Vent Locations for the Next Auckland Volcanic Field Event , 2005 .

[91]  R. Blong,et al.  Volcanic risk ranking for Auckland, New Zealand. I: Methodology and hazard investigation , 2005 .

[92]  Michel Campillo,et al.  High-Resolution Surface-Wave Tomography from Ambient Seismic Noise , 2005, Science.

[93]  P. Shane,et al.  Towards a comprehensive distal andesitic tephrostratigraphic framework for New Zealand based on eruptions from Egmont volcano , 2005 .

[94]  C. Nelson,et al.  Provenance history of a Late Triassic‐Jurassic Gondwana margin forearc basin, Murihiku Terrane, North Island, New Zealand: Petrographic and geochemical constraints , 2004 .

[95]  R. Maas,et al.  Petrology and Geochemistry of Intraplate Basalts in the South Auckland Volcanic Field, New Zealand: Evidence for Two Coeval Magma Suites from Distinct Sources , 2004 .

[96]  T. Feininger Igneous Rocks: A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks).Second edition. Edited by R.W. LeMaitre. Cambridge University Press, New York, N.Y., 2002, 236 + xvi pages. US$65 (ISBN 0–521–66215–X). , 2002 .

[97]  C. Locke,et al.  Te Pouhawaiki Volcano and pre‐volcanic topography in central Auckland: Volcanological and hydrogeological implications , 2001 .

[98]  C. Hawkesworth,et al.  Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: implications for mantle enrichment processes , 2000 .

[99]  B. Houghton,et al.  Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand , 1999 .

[100]  K. B. Spörli,et al.  Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand , 1997 .

[101]  C. Hawkesworth,et al.  Melt generation models for the Auckland volcanic field, New Zealand: constraints from UTh isotopes , 1997 .

[102]  W. McDonough,et al.  The composition of the Earth , 1995 .

[103]  H. Shibuya,et al.  K-Ar ages, paleomagnetism, and geochemistry of the South Auckland volcanic field, North Island, New Zealand , 1994 .

[104]  I. Smith,et al.  Eruption styles and volcanic hazard in the Auckland volcanic field,New Zealand (鮫島輝彦先生追悼論文集) , 1994 .

[105]  D. Lowe,et al.  Ages of the Pliocene-Pleistocene Alexandra and Ngatutura Volcanics, western North Island, New Zealand, and some geological implications , 1989 .

[106]  Y. Aita,et al.  Juxtaposition of Tethyan and non-Tethyan Mesozoic radiolarian faunas in melanges, Waipapa terrane, North Island, New Zealand , 1989 .

[107]  J. Bradshaw Cretaceous geotectonic patterns in the New Zealand Region , 1989 .

[108]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[109]  A. Hodder Late cenozoic rift development and intra-plate volcanism in Northern New Zealand inferred from geochemical discrimination diagrams , 1984 .

[110]  B. P. Kokelaar,et al.  The mechanism of Surtseyan volcanism , 1983, Journal of the Geological Society.

[111]  G. Mcgill Geology and geophysics , 1982, Nature.

[112]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[113]  R. Sibson,et al.  Junction magnetic anomaly north of Waikato River , 1970 .

[114]  H. Mooney Upper mantle inhomogeneity beneath New Zealand: Seismic evidence , 1970 .

[115]  K. A. Rodgers Petrofabric Studies of Ultramafic Nodules from Auckland, New Zealand , 1969, The Journal of Geology.

[116]  T. Hatherton A geophysical study of Nelson — Cook Strait region, New Zealand , 1967 .

[117]  E. Searle Volcanic risk in the Auckland Metropolitan district , 1964 .

[118]  E. Searle The volcanoes of Auckland city , 1962 .

[119]  E. Searle The petrology of the Auckland Basalts , 1961 .

[120]  E. Searle THE AGE OF THE AUCKLAND VOLCANOES , 1961 .

[121]  E. Searle The volcanoes of Ihumatao and Mangere, Auckland , 1959 .

[122]  E. Searle Schistose rocks from St. Heliers Bay, Auckland , 1959 .

[123]  Charles Heaphy On the Volcanic Country of Auckland, New Zealand , 1860, Quarterly Journal of the Geological Society of London.

[124]  P. Shane The Southern End of the Pacific Ring of Fire: Quaternary Volcanism in New Zealand , 2017 .

[125]  Iavcei Task Group on Crisis Protocols Toward IAVCEI guidelines on the roles and responsibilities of scientists involved in volcanic hazard evaluation, risk mitigation, and crisis response , 2016 .

[126]  J. Lindsay,et al.  Global Volcanic Hazards and Risk: An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project , 2015 .

[127]  Charles B. Connor,et al.  Basaltic Volcanic Fields , 2015 .

[128]  R. Sparks,et al.  Interpretation of umbrella cloud growth and morphology: implications for flow regimes of short-lived and long-lived eruptions , 2015, Bulletin of Volcanology.

[129]  T. Wilson,et al.  Volcanic ash impacts on critical infrastructure , 2012 .

[130]  F. Hauff,et al.  Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia , 2010 .

[131]  Colin J. N. Wilson,et al.  Taupo's atypical arc , 1996, Nature.

[132]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[133]  I. Smith Late Cenozoic volcanism in New Zealand , 1986 .

[134]  E. Searle,et al.  City of volcanoes : a geology of Auckland , 1981 .