Simulating lattice gauge theories within quantum technologies

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented - a classical simulation approach - applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.

[1]  E. Rico,et al.  Two-dimensional lattice gauge theories with superconducting quantum circuits , 2014, Annals of physics.

[2]  M. Lewenstein,et al.  $\mathbb{Z}_n$ Solitons in Intertwined Topological Phases: From Boson Fractionalization to a Generalized Bulk-Defect Correspondence , 2019, 1908.02186.

[3]  S. Montangero,et al.  Tensor network simulation of an SU(3) lattice gauge theory in 1D , 2019, Physical Review D.

[4]  N. Goldman,et al.  Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ2 lattice gauge theories , 2018, Science Advances.

[5]  T. Byrnes,et al.  Density matrix renormalization group approach to the massive Schwinger model , 2002, hep-lat/0202014.

[6]  J. Schwinger Gauge Invariance and Mass , 1962 .

[7]  C. Hamer SU(2) Yang-Mills theory in (1 + 1) dimensions: A finite-lattice approach , 1982 .

[8]  M. Lewenstein,et al.  Zn Solitons in Intertwined Topological Phases: From Boson Fractionalization to a Generalized Bulk-Defect Correspondence , 2019 .

[9]  J. Cirac,et al.  Strong Dissipation Inhibits Losses and Induces Correlations in Cold Molecular Gases , 2008, Science.

[10]  Estimating the central charge from the Rényi entanglement entropy , 2017, 1703.10577.

[11]  C. Monroe,et al.  Towards analog quantum simulations of lattice gauge theories with trapped ions , 2019, Physical Review Research.

[12]  D. Banerjee,et al.  The (2 + 1)-d U(1) quantum link model masquerading as deconfined criticality , 2013, 1303.6858.

[13]  Benni Reznik,et al.  Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. , 2011, Physical review letters.

[14]  E. Fradkin,et al.  Field Theories of Condensed Matter Physics , 2013 .

[15]  E. Calzetta,et al.  Nonequilibrium quantum field theory , 2008 .

[16]  M. Lewenstein,et al.  Confinement and Lack of Thermalization after Quenches in the Bosonic Schwinger Model. , 2019, Physical review letters.

[17]  J. Cirac,et al.  Combining tensor networks with Monte Carlo methods for lattice gauge theories , 2017, 1710.11013.

[18]  K. Wilson Confinement of Quarks , 1974 .

[19]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[20]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[21]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[22]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[23]  J. Cirac,et al.  Variational Study of Fermionic and Bosonic Systems with Non-Gaussian States: Theory and Applications , 2017, 1707.05902.

[24]  S. Montangero,et al.  Real-time-dynamics quantum simulation of (1+1)-dimensional lattice QED with Rydberg atoms , 2019, Physical Review Research.

[25]  S. Elitzur,et al.  Impossibility of spontaneously breaking local symmetries , 1975 .

[26]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[27]  M. V. Moghaddam,et al.  Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder , 2019, Physical Review A.

[28]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[29]  Probing the conformal Calabrese-Cardy scaling with cold atoms , 2016, 1611.05016.

[30]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[31]  J. Schwinger,et al.  GAUGE INVARIANCE AND MASS. PART II. , 1962 .

[32]  Alexander Altland,et al.  Condensed Matter Field Theory , 2006 .

[33]  M. Lewenstein,et al.  Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian , 2018, Physical Review B.

[34]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[35]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[36]  P. Zoller,et al.  Emerging Two-Dimensional Gauge Theories in Rydberg Configurable Arrays , 2019, Physical Review X.

[37]  C. Hamer,et al.  The massive Schwinger model on a lattice: Background field, chiral symmetry and the string tension , 1982 .

[38]  P. Gaspard,et al.  Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions. , 2009, Physical review letters.

[39]  J. Cirac,et al.  Projected Entangled Pair States with non-Abelian gauge symmetries: an SU(2) study , 2016, 1607.08115.

[40]  C. Salomon,et al.  The Equation of State of a Low-Temperature Fermi Gas with Tunable Interactions , 2010, Science.

[41]  J. Cirac,et al.  Digital lattice gauge theories , 2016, 1607.08121.

[42]  Krzysztof Cichy,et al.  Review on novel methods for lattice gauge theories. , 2019, Reports on progress in physics. Physical Society.

[43]  P. Zoller,et al.  Designing frustrated quantum magnets with laser-dressed Rydberg atoms. , 2014, Physical review letters.

[44]  F. Verstraete,et al.  Matrix product states for gauge field theories. , 2013, Physical review letters.

[45]  E. Rico,et al.  Superconducting circuits for quantum simulation of dynamical gauge fields. , 2013, Physical review letters.

[46]  M. Oberthaler,et al.  Implementing quantum electrodynamics with ultracold atomic systems , 2016, 1608.03480.

[47]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[48]  P. Zoller,et al.  Atomic color superfluid via three-body loss. , 2009, Physical review letters.

[49]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[50]  I. B. Spielman,et al.  Visualizing edge states with an atomic Bose gas in the quantum Hall regime , 2015, Science.

[51]  M. Lewenstein,et al.  Toolbox for Abelian lattice gauge theories with synthetic matter , 2016, 1601.03303.

[52]  A. Bazavov,et al.  Progress towards quantum simulating the classical O(2) Model , 2014, 1403.5238.

[53]  M. Dalmonte,et al.  Phase diagram and conformal string excitations of square ice using gauge invariant matrix product states , 2018, SciPost Physics.

[54]  S. Coleman More About the Massive Schwinger Model , 1976 .

[55]  A. Trombettoni,et al.  Non-Abelian anions from degenerate landau levels of ultracold atoms in artificial gauge potentials. , 2010, Physical review letters.

[56]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[57]  T. Hartung,et al.  Zeta-regularized vacuum expectation values , 2018, Journal of Mathematical Physics.

[58]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[59]  A. Bazavov,et al.  Tensor renormalization group study of the non-Abelian Higgs model in two dimensions , 2019, Physical Review D.

[60]  M. Creutz Gauge Fixing, the Transfer Matrix, and Confinement on a Lattice , 1977 .

[61]  Tim Byrnes,et al.  Simulating lattice gauge theories on a quantum computer (熱場の量子論とその応用) , 2006 .

[62]  H. Wittig,et al.  Lattice QCD and the anomalous magnetic moment of the muon , 2018, Progress in Particle and Nuclear Physics.

[63]  M. Dalmonte,et al.  Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators , 2019, Physical Review X.

[64]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[65]  Huaiyu Mi,et al.  Ontologies and Standards in Bioscience Research: For Machine or for Human , 2010, Front. Physio..

[66]  Jesse R. Stryker,et al.  Gauss’s law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory , 2018, Physical Review D.

[67]  R. Orús,et al.  Tensor network simulation of QED on infinite lattices: Learning from (1+1)d , and prospects for (2+1)d , 2017, 1704.03015.

[68]  Quark confinement and the bosonic string , 2002, hep-lat/0207003.

[69]  T. Lippert,et al.  Ab Initio Determination of Light Hadron Masses , 2008, Science.

[70]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[71]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[72]  M. Lewenstein,et al.  Strongly Correlated Bosons on a Dynamical Lattice. , 2018, Physical review letters.

[73]  T. Xiang,et al.  Controlling sign problems in spin models using tensor renormalization , 2013, 1309.6623.

[74]  S. Takeda,et al.  Grassmann tensor renormalization group for the one-flavor lattice Gross–Neveu model with finite chemical potential , 2014, 1412.7855.

[75]  R. Fazio,et al.  Magnetic crystals and helical liquids in alkaline-earth fermionic gases , 2015, Nature Communications.

[76]  M. Lüscher Signatures of unstable particles in finite volume , 1991 .

[77]  T. Esslinger,et al.  Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter , 2018, Nature Physics.

[78]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[79]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[80]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[81]  Fermilab,et al.  Exact Blocking Formulas for Spin and Gauge Models , 2013, 1307.6543.

[82]  S. Montangero,et al.  Two-Dimensional Quantum-Link Lattice Quantum Electrodynamics at Finite Density , 2019, Physical Review X.

[83]  Quantum link models: A discrete approach to gauge theories☆ , 1996, hep-lat/9609042.

[84]  E. Rico,et al.  Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.

[85]  Matthias Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[86]  A. Polyakov Quark confinement and topology of gauge theories , 1977 .

[87]  R. Fazio,et al.  Topological Fractional Pumping with Alkaline-Earth-Like Atoms in Synthetic Lattices. , 2016, Physical review letters.

[88]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[89]  J. Cresswell A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees , 2011, Ecotoxicology.

[90]  S. Lawrence,et al.  Gluon field digitization for quantum computers , 2019, Physical Review D.

[91]  Z. Y. Xie,et al.  Tensor renormalization group study of classical XY model on the square lattice. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  E. Rico,et al.  Finite-density phase diagram of a $(1+1)-d$ non-abelian lattice gauge theory with tensor networks , 2016, 1606.05510.

[93]  S. Trivedi,et al.  On the entanglement entropy for gauge theories , 2015, 1501.02593.

[94]  Andrew M. Weiner,et al.  Simulations of subatomic many-body physics on a quantum frequency processor , 2018, Physical Review A.

[95]  J. Cirac,et al.  Pairing in fermionic systems: A quantum-information perspective , 2008, 0810.4772.

[96]  Yuya Shimizu,et al.  Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group , 2014, 1408.0897.

[97]  Indrakshi Raychowdhury Low energy spectrum of SU(2) lattice gauge theory , 2018, The European Physical Journal C.

[98]  E. López,et al.  Tensor renormalization group in bosonic field theory , 2019, Physical Review B.

[99]  C. Chamon,et al.  Constructing Quantum Spin Liquids Using Combinatorial Gauge Symmetry. , 2020, Physical review letters.

[100]  Philipp Schindler,et al.  U(1) Wilson lattice gauge theories in digital quantum simulators , 2016, 1612.08653.

[101]  R. Moessner,et al.  Dynamics of a lattice gauge theory with fermionic matter—minimal quantum simulator with time-dependent impurities in ultracold gases , 2018, Quantum Science and Technology.

[102]  A. Bermudez,et al.  Symmetry-protected topological phases in lattice gauge theories: Topological QED2 , 2018, Physical Review D.

[103]  P Zoller,et al.  Atomic quantum simulator for lattice gauge theories and ring exchange models. , 2005, Physical review letters.

[104]  F. Verstraete,et al.  Matrix product states for Hamiltonian lattice gauge theories , 2014, 1411.0020.

[105]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[106]  J. Cirac,et al.  Pfaffian state generation by strong three-body dissipation. , 2009, Physical review letters.

[107]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[108]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[109]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[110]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[111]  Alan D. Martin,et al.  Review of Particle Physics , 2018, Physical Review D.

[112]  G. Evenbly,et al.  Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law , 2009, 0903.5017.

[113]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[114]  Jesse R. Stryker Oracles for Gauss's law on digital quantum computers , 2018, Physical Review A.

[115]  J Casanova,et al.  Fermion-fermion scattering in quantum field theory with superconducting circuits. , 2014, Physical review letters.

[116]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[117]  S. Jochim,et al.  Equation of State of Ultracold Fermions in the 2D BEC-BCS Crossover Region. , 2015, Physical review letters.

[118]  Guifre Vidal,et al.  Entanglement renormalization and gauge symmetry , 2010, 1007.4145.

[119]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[120]  Loop approach to lattice gauge theories , 2007, hep-lat/0702007.

[121]  U. Wiese Towards quantum simulating QCD , 2014, 1409.7414.

[122]  Benni Reznik,et al.  Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices , 2015, Reports on progress in physics. Physical Society.

[123]  M. Bañuls,et al.  Chiral condensate in the Schwinger model with matrix product operators , 2016, 1603.05002.

[124]  P. Buividovich,et al.  Entanglement entropy in lattice gauge theories , 2008, 0811.3824.

[125]  Philippe Mendels,et al.  Spin-Lattice Coupling in Frustrated Antiferromagnets , 2009, 0907.1693.

[126]  F. Schmidt-Kaler,et al.  Hexagonal plaquette spin–spin interactions and quantum magnetism in a two-dimensional ion crystal , 2015, 1504.01474.

[127]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[128]  Peter Zoller,et al.  Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions , 2013, 1306.2162.

[129]  R. Narayanan Two flavor massless Schwinger model on a torus at a finite chemical potential , 2012, 1210.3072.

[130]  P. Zoller,et al.  Quantum spin-ice and dimer models with Rydberg atoms , 2014, 1404.5326.

[131]  P. Zoller,et al.  Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms. , 2013, Physical review letters.

[132]  A. Bazavov,et al.  Gauge-invariant implementation of the Abelian-Higgs model on optical lattices , 2015, 1503.08354.

[133]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[134]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[135]  G. Modugno Anderson localization in Bose–Einstein condensates , 2010, 1009.0555.

[136]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[137]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[138]  M. Constantinou Recent progress in hadron structure from Lattice QCD , 2015, 1511.00214.

[139]  C Clivati,et al.  Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition. , 2016, Physical review letters.

[140]  W. Y. Chan,et al.  Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in $$pp$$ collisions at $$\sqrt{s}=13$$ TeV with the ATLAS detector , 2019, The European Physical Journal C.

[141]  D. Horn Finite matrix models with continuous local gauge invariance , 1981 .

[142]  J. Berges,et al.  Simulating fermion production in 1+1 dimensional QED , 2013, 1302.5537.

[143]  F. Verstraete,et al.  Confinement and string breaking for QED$_2$ in the Hamiltonian picture , 2015, 1509.00246.

[144]  Graham Shaw,et al.  Nuclear and Particle Physics: An Introduction , 2006 .

[145]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[146]  Jesse R. Stryker,et al.  SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers , 2019, Physical Review D.

[147]  M W Mitchell,et al.  Simulation of non-Abelian gauge theories with optical lattices , 2012, Nature Communications.

[148]  J. Cirac,et al.  Matrix Product States for Lattice Field Theories , 2013, 1310.4118.

[149]  R. Feynman Quantum mechanical computers , 1986 .

[150]  A. Jüttner Review of light flavour physics on the lattice , 2016 .

[151]  E. Rico,et al.  Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks , 2015, 1505.04440.

[152]  K. Jansen,et al.  O(3) nonlinear sigma model in 1+1 dimensions with matrix product states , 2018, Physical Review D.

[153]  M. Lewenstein,et al.  Symmetry-breaking topological insulators in the Z2 Bose-Hubbard model , 2018, Physical Review B.

[154]  Y. Kuramashi,et al.  Three-dimensional finite temperature Z2 gauge theory with tensor network scheme , 2018, Journal of High Energy Physics.

[155]  Mottola,et al.  Fermion pair production in a strong electric field. , 1992, Physical Review D, Particles and fields.

[156]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[157]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[158]  Cyclic exchange, isolated states and spinon deconfinement in an XXZ Heisenberg model on the checkerboard lattice , 2004, cond-mat/0403729.

[159]  Marcello Calvanese Strinati,et al.  Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders , 2016, 1612.06682.

[160]  Tailoring non-Abelian lattice gauge theory for quantum simulation , 2018, 1812.07554.

[161]  Atlas Collaboration Search for light long-lived neutral particles produced in $pp$ collisions at $\sqrt{s} =$ 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector , 2019, 1909.01246.

[162]  D. Rohrlich,et al.  Lattice Gauge Magnets: Local Isospin From Spin , 1990 .

[163]  I. Bloch,et al.  Quantum simulations with ultracold atoms in optical lattices , 2017, Science.

[164]  E. Rico,et al.  SO(3) “Nuclear Physics” with ultracold Gases , 2018, Annals of Physics.

[165]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[166]  J. Cirac,et al.  Fermionic Projected Entangled Pair States and Local U(1) Gauge Theories , 2015, 1507.08837.

[167]  A. Bazavov,et al.  Universal features of the Abelian Polyakov loop in 1+1 dimensions , 2018, Physical Review D.

[168]  A. Bermudez,et al.  ZN gauge theories coupled to topological fermions: QED2 with a quantum mechanical θ angle , 2019, Physical Review B.

[169]  T. Matsui,et al.  Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry. , 2012, Physical review letters.

[170]  Frithjof Karsch,et al.  Thermodynamics of strong-interaction matter from Lattice QCD , 2013, 1504.05274.

[171]  J. Zeiher,et al.  Quantum Simulation of the Universal Features of the Polyakov Loop. , 2018, Physical review letters.

[172]  C. P. Hofmann,et al.  Interfaces, Strings, and a Soft Mode in the Square Lattice Quantum Dimer Model , 2014, 1406.2077.

[173]  U. Wiese Identification of resonance parameters from the finite volume energy spectrum , 1989 .

[174]  Patrick Dreher,et al.  Real time evolution of a one-dimensional field theory on a 20 qubit machine , 2019 .

[175]  Y. Kuramashi,et al.  Phase transition of four-dimensional Ising model with higher-order tensor renormalization group , 2019, Physical Review D.

[176]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[177]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[178]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[179]  S. Lawrence,et al.  General methods for digital quantum simulation of gauge theories , 2019, Physical Review D.

[180]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[181]  Harmonic oscillator pre-potentials in SU(2) lattice gauge theory , 2004, hep-lat/0403029.

[182]  Michael Marien,et al.  Entanglement of Distillation for Lattice Gauge Theories. , 2015, Physical review letters.

[183]  N. Goldman,et al.  Floquet approach to Z 2 lattice gauge theories with ultracold atoms in optical lattices , 2019 .

[184]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[185]  F. Verstraete,et al.  Tensor networks for gauge field theories , 2015, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2015).

[186]  Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach , 2001, quant-ph/0107143.

[187]  Erez Zohar Half a state, half an operator: a general formulation of stators , 2016 .

[188]  R. Brower,et al.  QCD as a quantum link model , 1997, hep-th/9704106.

[190]  R. Anishetty,et al.  SU(2) lattice gauge theory: Local dynamics on nonintersecting electric flux loops , 2014, 1408.6331.

[191]  C. Hamer,et al.  Density matrix renormalization group approach to the massive Schwinger model , 2002, hep-lat/0201007.

[192]  A. M. Guler,et al.  Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam , 2015, 1503.01876.

[193]  K. Jansen,et al.  Topological vacuum structure of the Schwinger model with matrix product states , 2019, Physical Review D.

[194]  M. Lewenstein,et al.  Optical Abelian Lattice Gauge Theories , 2012, 1205.0496.

[195]  Series expansions for the massive Schwinger model in Hamiltonian lattice theory , 1997, hep-lat/9701015.

[196]  F. Verstraete,et al.  Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks , 2017, 1702.08838.

[197]  Yoshifumi Nakamura,et al.  Tensor network formulation for two-dimensional lattice N$$ \mathcal{N} $$ = 1 Wess-Zumino model , 2018, 1801.04183.

[198]  P. Massignan,et al.  Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases , 2013, Reports on progress in physics. Physical Society.

[199]  K. Cichy,et al.  A Guide to Light-Cone PDFs from Lattice QCD: An Overview of Approaches, Techniques, and Results , 2018, Advances in High Energy Physics.

[200]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[201]  J. Cirac,et al.  Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter. , 2016, Physical review letters.

[202]  W. Zwerger Itinerant Ferromagnetism with Ultracold Atoms , 2009, Science.

[203]  M. Lewenstein,et al.  Intertwined topological phases induced by emergent symmetry protection , 2019, Nature Communications.

[204]  F. Verstraete,et al.  Variational matrix product ansatz for dispersion relations , 2011, 1103.2286.

[205]  E. Rico,et al.  Lattice gauge tensor networks , 2014, 1404.7439.

[206]  N. Goldman,et al.  Floquet approach to ℤ2 lattice gauge theories with ultracold atoms in optical lattices , 2019, Nature Physics.

[207]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[208]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[209]  Simone Montangero,et al.  Introduction to Tensor Network Methods: Numerical simulations of low-dimensional many-body quantum systems , 2018 .

[210]  E. Solano,et al.  Quantum-classical computation of Schwinger model dynamics using quantum computers , 2018, Physical Review A.

[211]  M. Lewenstein,et al.  Synthetic gauge fields in synthetic dimensions. , 2013, Physical review letters.

[212]  P. Facchi,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2008, 0903.3297.

[213]  E. Rico,et al.  Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.

[214]  R. Anishetty,et al.  SU(N) Irreducible Schwinger Bosons , 2010, 1003.5487.

[215]  M. Lewenstein,et al.  Quantum simulation of non-trivial topology , 2014, 1409.4770.

[216]  S. Montangero,et al.  Lattice gauge theory simulations in the quantum information era , 2016, 1602.03776.

[217]  Leonard Susskind,et al.  Strong Coupling Calculations of Lattice Gauge Theories: (1+1)-Dimensional Exercises , 1976 .

[218]  P. Zoller,et al.  CP(N-1) Quantum Field Theories with Alkaline-Earth Atoms in Optical Lattices , 2015, 1507.06788.

[219]  M. Oberthaler,et al.  Schwinger pair production with ultracold atoms , 2015, 1506.01238.

[220]  E. Rico,et al.  Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. , 2015, Physical review letters.

[221]  M. Dorigo,et al.  First observation and measurement of the branching fraction for the decay Bs0 → Ds∗∓K± , 2015, 1503.09086.

[222]  J. Cirac,et al.  Quantum simulations of gauge theories with ultracold atoms: Local gauge invariance from angular-momentum conservation , 2013, 1303.5040.

[223]  H. Briegel,et al.  Unifying all classical spin models in a lattice gauge theory. , 2008, Physical review letters.

[224]  M. Lewenstein,et al.  Gross–Neveu–Wilson model and correlated symmetry-protected topological phases , 2018, Annals of Physics.

[225]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[226]  David E. Pritchard,et al.  Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms , 2009, Science.

[227]  Claude Amsler et al Review of Particle Physics (2008) , 2008 .

[228]  M. Burrello,et al.  Building Projected Entangled Pair States with a Local Gauge Symmetry , 2015, 1511.08426.

[229]  J. Cirac,et al.  Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States. , 2016, Physical review letters.

[230]  L. Balents,et al.  Fractionalization in an easy-axis Kagome antiferromagnet , 2002 .

[231]  M. Lewenstein,et al.  Tensor Networks for Lattice Gauge Theories with continuous groups , 2014, 1405.4811.

[232]  I. Peschel,et al.  Reduced density matrices and entanglement entropy in free lattice models , 2009, 0906.1663.

[233]  Yuya Shimizu,et al.  Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion , 2017, 1712.07808.

[234]  A. Scardicchio,et al.  Many-Body Localization Dynamics from Gauge Invariance. , 2017, Physical review letters.

[235]  R. Narayanan,et al.  Phase structure of two-dimensional QED at zero temperature with flavor-dependent chemical potentials and the role of multidimensional theta functions , 2013, 1307.4969.

[236]  S. Schaefer,et al.  QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter. , 2017, Physical review letters.

[237]  Erik Gustafson,et al.  Quantum simulation of scattering in the quantum Ising model , 2019, Physical Review D.

[238]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[239]  J. Unmuth-Yockey Gauge-invariant rotor Hamiltonian from dual variables of 3D U(1) gauge theory , 2018, Physical Review D.

[240]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[241]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[242]  Robert Savit,et al.  Duality in field theory and statistical systems , 1980 .

[243]  D. Rokhsar,et al.  Superconductivity and the quantum hard-core dimer gas. , 1988, Physical review letters.

[244]  R. van Bijnen,et al.  Quantum Magnetism and Topological Ordering via Rydberg Dressing near Förster Resonances. , 2014, Physical review letters.

[245]  K. Jansen,et al.  Quantum computing of zeta-regularized vacuum expectation values , 2018 .

[246]  Yuya Shimizu,et al.  Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model , 2014, 1403.0642.

[248]  R. Feynman Simulating physics with computers , 1999 .

[249]  C. Hamer Lattice model calculations for SU(2) Yang-Mills theory in 1 + 1 dimensions , 1977 .

[250]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[251]  E. Rico,et al.  Loops and Strings in a Superconducting Lattice Gauge Simulator. , 2015, Physical review letters.

[252]  J. Cirac,et al.  Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states , 2017, 1707.06434.

[253]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[254]  M. Lewenstein,et al.  Quantum simulation of an extra dimension. , 2011, Physical review letters.

[255]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[256]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[257]  K. Jansen,et al.  The mass spectrum of the Schwinger model with matrix product states , 2013, 1305.3765.

[258]  M. Rizzi,et al.  Exploring Interacting Topological Insulators with Ultracold Atoms: the Synthetic Creutz-Hubbard Model , 2016, 1612.02996.

[259]  A. Kronfeld Twenty-first Century Lattice Gauge Theory: Results from the QCD Lagrangian , 2012, 1203.1204.

[260]  M. Bañuls,et al.  The multi-flavor Schwinger model with chemical potential - Overcoming the sign problem with Matrix Product States , 2016, 1611.01458.

[261]  T. Matsui,et al.  Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model , 2016, 1605.02502.

[262]  S. Gottlieb,et al.  FLAG Review 2019 , 2019, The European Physical Journal C.

[263]  Tensor Network Contractions , 2017, Lecture Notes in Physics.

[264]  T. Schaetz,et al.  Floquet-Engineered Vibrational Dynamics in a Two-Dimensional Array of Trapped Ions. , 2019, Physical review letters.

[265]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[266]  R. Moessner,et al.  Absence of Ergodicity without Quenched Disorder: From Quantum Disentangled Liquids to Many-Body Localization. , 2017, Physical review letters.

[267]  Tensor Network Simulation of compact one-dimensional lattice Quantum Chromodynamics at finite density , 2019, 1901.04403.

[268]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[269]  F. Verstraete,et al.  Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems , 2014, 1407.1025.

[270]  J. Cirac,et al.  Thermal evolution of the Schwinger model with Matrix Product Operators , 2015, 1505.00279.

[271]  F. Verstraete,et al.  Real-time simulation of the Schwinger effect with matrix product states , 2016, Physical Review D.

[272]  T. Pohl,et al.  Quantum magnetism and topological ordering via enhanced Rydberg-dressing near Förster-resonances , 2015 .

[273]  R. Anishetty,et al.  Prepotential formulation of SU(3) lattice gauge theory , 2009, 0909.2394.

[274]  F. Verstraete,et al.  Hamiltonian simulation of the Schwinger model at finite temperature , 2016, 1606.03385.

[275]  Bootstrap and collider physics of parity violating conformal field theories in d = 3 , 2018, Journal of High Energy Physics.

[276]  J. Cirac,et al.  Digital quantum simulation of lattice gauge theories in three spatial dimensions , 2018, New Journal of Physics.

[277]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[278]  A. Wipf,et al.  Finite Temperature Schwinger Model , 1991, Statistical Approach to Quantum Field Theory.

[279]  J. Cirac,et al.  Tensor Networks and their use for Lattice Gauge Theories , 2018, Proceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018).

[280]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[281]  J. Cirac,et al.  Non-Abelian string breaking phenomena with matrix product states , 2015, 1505.04441.