Quantum interference device for controlled two-qubit operations

Universal quantum computing relies on high-fidelity entangling operations. Here, we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using capacitively coupled qubits arranged in a diamond-shaped architecture.

[1]  C. A. Young The American Eclipse , 1870, Nature.

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  Physical Review Letters 63 , 1989 .

[4]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[6]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[7]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[8]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[9]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[10]  Mark A. Eriksson,et al.  Practical design and simulation of silicon-based quantum-dot qubits , 2003 .

[11]  Xuedong Hu,et al.  Low-decoherence flux qubit , 2007 .

[12]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[13]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[14]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[15]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[16]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[17]  John A Smolin,et al.  Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. , 2012, Physical review letters.

[18]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[19]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[20]  P Bertet,et al.  Characterization of a two-transmon processor with individual single-shot qubit readout. , 2012, Physical review letters.

[21]  Yasunobu Nakamura,et al.  Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.

[22]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[23]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[24]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[25]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[26]  Andrew W. Cross,et al.  Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code , 2014, 1410.6419.

[27]  D. M. Lucas,et al.  High-fidelity two-qubit quantum logic gates using trapped calcium-43 ions , 2014, 1406.5473.

[28]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[29]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[30]  Isotope engineering of silicon and diamond for quantum computing and sensing applications , 2014, 1410.3922.

[31]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[32]  Andrew Steane,et al.  Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes , 2015, Nature.

[33]  E. Solano,et al.  Digital quantum simulation of spin models with circuit quantum electrodynamics , 2015, 1502.06778.

[34]  S. Lloyd,et al.  Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions , 2015, 1509.01278.

[35]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[36]  Seth Lloyd,et al.  Time Independent Universal Computing with Spin Chains: Quantum Plinko Machine , 2015 .

[37]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[38]  Andrew W. Cross,et al.  Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System. , 2016, Physical review letters.

[39]  T. Harty,et al.  High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves. , 2016, Physical review letters.

[40]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[41]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[42]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[43]  Sarah Sheldon,et al.  Characterizing errors on qubit operations via iterative randomized benchmarking , 2015, 1504.06597.

[44]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[45]  V. Karimipour,et al.  Time-independent quantum circuits with local interactions , 2016, 1602.06362.

[46]  Zijun Chen,et al.  Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. , 2015, Physical review letters.

[47]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[48]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[49]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[50]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[51]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[52]  N. Didier,et al.  Analytical modeling of parametrically-modulated transmon qubits , 2017, 1706.06566.

[53]  N. Langford,et al.  Tuneable hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting circuit , 2018, npj Quantum Information.

[54]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[55]  Fei Yan,et al.  Tunable Coupling Scheme for Implementing High-Fidelity Two-Qubit Gates , 2018, Physical Review Applied.

[56]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[57]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[58]  Zhonghua Shen,et al.  Imaging gigahertz zero-group-velocity Lamb waves , 2019, Nature Communications.

[59]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[60]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[61]  D. DiVincenzo,et al.  Hamiltonian quantum computing with superconducting qubits , 2018, Quantum Science and Technology.

[62]  M. Devoret,et al.  Cavity Attenuators for Superconducting Qubits , 2018, Physical Review Applied.

[63]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[64]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[65]  Barbara M. Terhal,et al.  Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage Interference in Weakly Anharmonic Superconducting Qubits. , 2019, Physical review letters.

[66]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[67]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[68]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[69]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[70]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[71]  P. Alam ‘K’ , 2021, Composites Engineering.

[72]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[73]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[74]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.