Calcium Channel Regulation and Presynaptic Plasticity

[1]  Andrew Charles,et al.  The neurobiology of migraine. , 2010, Handbook of clinical neurology.

[2]  Masahiko Watanabe,et al.  Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels , 2008, Proceedings of the National Academy of Sciences.

[3]  C. Romanin,et al.  Modulation of Voltage- and Ca2+-dependent Gating of CaV1.3 L-type Calcium Channels by Alternative Splicing of a C-terminal Regulatory Domain , 2008, Journal of Biological Chemistry.

[4]  Susana R. Neves,et al.  Design Logic of a Cannabinoid Receptor Signaling Network That Triggers Neurite Outgrowth , 2008, Science.

[5]  Takeshi Nakamura,et al.  Developmental changes in calcium/calmodulin‐dependent inactivation of calcium currents at the rat calyx of Held , 2008, The Journal of physiology.

[6]  K. Watschinger,et al.  A Destructive Interaction Mechanism Accounts for Dominant-Negative Effects of Misfolded Mutants of Voltage-Gated Calcium Channels , 2008, The Journal of Neuroscience.

[7]  D. T. Yue,et al.  A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels , 2008, Nature.

[8]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[9]  Jonas Korlach,et al.  Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer , 2008, Proceedings of the National Academy of Sciences.

[10]  W. Catterall,et al.  Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain , 2008, Proceedings of the National Academy of Sciences.

[11]  T. Moser,et al.  Ca2+‐binding proteins tune Ca2+‐feedback to Cav1.3 channels in mouse auditory hair cells , 2007, The Journal of physiology.

[12]  I. Forsythe,et al.  Changes in synaptic transmission properties due to the expression of N‐type calcium channels at the calyx of Held synapse of mice lacking P/Q‐type calcium channels , 2007, The Journal of physiology.

[13]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[14]  R. Schneggenburger,et al.  Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC , 2007, Proceedings of the National Academy of Sciences.

[15]  Alcino J. Silva,et al.  Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses , 2007, Nature Neuroscience.

[16]  Xiang Li,et al.  Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavβ4 versus Cavβ2 subunits to synaptic terminals , 2007, The Journal of cell biology.

[17]  A. J. Castiglioni,et al.  Differential Role of N-Type Calcium Channel Splice Isoforms in Pain , 2007, The Journal of Neuroscience.

[18]  Aaron M. Beedle,et al.  RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels , 2007, Nature Neuroscience.

[19]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[20]  Annette C. Dolphin,et al.  Functional biology of the α 2 δ subunits of voltage-gated calcium channels , 2007 .

[21]  R. Schneggenburger,et al.  Parvalbumin Is a Mobile Presynaptic Ca2+ Buffer in the Calyx of Held that Accelerates the Decay of Ca2+ and Short-Term Facilitation , 2007, The Journal of Neuroscience.

[22]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[23]  A. J. Castiglioni,et al.  Alternative splicing controls G protein–dependent inhibition of N-type calcium channels in nociceptors , 2007, Nature Neuroscience.

[24]  C. Gomez,et al.  Dominant-negative suppression of Cav2.1 currents by α12.1 truncations requires the conserved interaction domain for β subunits , 2007, Molecular and Cellular Neuroscience.

[25]  W. Catterall,et al.  Bidirectional Modulation of Transmitter Release by Calcium Channel/Syntaxin Interactions In Vivo , 2007, The Journal of Neuroscience.

[26]  C. Gomez,et al.  Dominant-negative suppression of Cav2.1 currents by alpha(1)2.1 truncations requires the conserved interaction domain for beta subunits. , 2007, Molecular and cellular neurosciences.

[27]  J. Sullivan A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression. , 2007, Journal of neurophysiology.

[28]  J. Borst,et al.  An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. , 2006, Journal of neurophysiology.

[29]  B. Spiegelman,et al.  Direct G Protein Modulation of Cav2 Calcium Channels , 2006, Pharmacological Reviews.

[30]  A. Koschak,et al.  Role of voltage-gated L-type Ca2+ channel isoforms for brain function. , 2006, Biochemical Society transactions.

[31]  Yi Zhou,et al.  Modulation of Inactivation Properties of CaV2.2 Channels by 14-3-3 Proteins , 2006, Neuron.

[32]  Xiang Li,et al.  RGS2 Determines Short-Term Synaptic Plasticity in Hippocampal Neurons by Regulating Gi/o- Mediated Inhibition of Presynaptic Ca2+ Channels , 2006, Neuron.

[33]  C. Romanin,et al.  C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels , 2006, Nature Neuroscience.

[34]  G. Obermair,et al.  Role of the synprint site in presynaptic targeting of the calcium channel CaV2.2 in hippocampal neurons , 2006, The European journal of neuroscience.

[35]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[36]  C. Jeng,et al.  Dominant-negative effects of human P/Q-type Ca2+ channel mutations associated with episodic ataxia type 2. , 2006, American journal of physiology. Cell physiology.

[37]  R. Hawkins,et al.  Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Catterall,et al.  Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily , 2005, Pharmacological Reviews.

[39]  James Kim,et al.  CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation , 2005, The Journal of cell biology.

[40]  T. Ishikawa,et al.  Presynaptic N‐type and P/Q‐type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice , 2005, The Journal of physiology.

[41]  D. T. Yue,et al.  Developmental Activation of Calmodulin-Dependent Facilitation of Cerebellar P-Type Ca2+ Current , 2005, The Journal of Neuroscience.

[42]  Kuai Yu,et al.  Molecular Mechanism for Divergent Regulation of Cav1.2 Ca2+ Channels by Calmodulin and Ca2+-binding Protein-1* , 2005, Journal of Biological Chemistry.

[43]  William A Catterall,et al.  Differential Regulation of CaV2.1 Channels by Calcium-Binding Protein 1 and Visinin-Like Protein-2 Requires N-Terminal Myristoylation , 2005, The Journal of Neuroscience.

[44]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[45]  Mark S. Shapiro,et al.  Phosphoinositide Lipid Second Messengers: New Paradigms for Calcium Channel Modulation , 2005, Neuron.

[46]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[47]  R. Schneggenburger,et al.  Presynaptic Ca2+ Requirements and Developmental Regulation of Posttetanic Potentiation at the Calyx of Held , 2005, The Journal of Neuroscience.

[48]  Jianhua Xu,et al.  The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse , 2005, Neuron.

[49]  Yukihiro Nakamura,et al.  G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Zamponi,et al.  Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels. , 2005, Cell calcium.

[51]  K. Moulder,et al.  Reluctant Vesicles Contribute to the Total Readily Releasable Pool in Glutamatergic Hippocampal Neurons , 2005, The Journal of Neuroscience.

[52]  J. Borst,et al.  Post‐tetanic potentiation in the rat calyx of Held synapse , 2005, The Journal of physiology.

[53]  A. Dolphin Faculty Opinions recommendation of Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. , 2005 .

[54]  R. Tsien,et al.  Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Catterall,et al.  Mechanism of SNARE protein binding and regulation of Cav2 channels by phosphorylation of the synaptic protein interaction site , 2005, Molecular and Cellular Neuroscience.

[56]  鷹合 秀輝 G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held , 2005 .

[57]  I. Forsythe,et al.  Functional Compensation of P/Q by N-Type Channels Blocks Short-Term Plasticity at the Calyx of Held Presynaptic Terminal , 2004, The Journal of Neuroscience.

[58]  M. Diversé-Pierluissi,et al.  Ca2+ Channels As Integrators of G Protein-Mediated Signaling in Neurons , 2004, Molecular Pharmacology.

[59]  A. Tischler,et al.  Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Catterall,et al.  DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. , 2004 .

[61]  R. Tsien,et al.  Presynaptic Ca2+ Channels Compete for Channel Type-Preferring Slots in Altered Neurotransmission Arising from Ca2+ Channelopathy , 2004, Neuron.

[62]  D. T. Yue,et al.  Alternative Splicing as a Molecular Switch for Ca2+/Calmodulin-Dependent Facilitation of P/Q-Type Ca2+ Channels , 2004, The Journal of Neuroscience.

[63]  W. Regehr,et al.  Endocannabinoids Inhibit Transmission at Granule Cell to Purkinje Cell Synapses by Modulating Three Types of Presynaptic Calcium Channels , 2004, The Journal of Neuroscience.

[64]  R. Iyengar,et al.  Modeling cell signaling networks. , 2004, Biology of the cell.

[65]  E. F. Stanley,et al.  A Syntaxin 1, Gαo, and N-Type Calcium Channel Complex at a Presynaptic Nerve Terminal: Analysis by Quantitative Immunocolocalization , 2004, The Journal of Neuroscience.

[66]  Simon Kaja,et al.  A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression , 2004, Neuron.

[67]  H. Lux,et al.  Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick , 1986, Pflügers Archiv.

[68]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[69]  W. Catterall,et al.  Functional role of a C-terminal Gbetagamma-binding domain of Ca(v)2.2 channels. , 2004, Molecular pharmacology.

[70]  W. Catterall,et al.  Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Annette C. Dolphin,et al.  β Subunits of Voltage-Gated Calcium Channels , 2003, Journal of bioenergetics and biomembranes.

[72]  D. T. Yue,et al.  Unified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family , 2003, Neuron.

[73]  Andreas Jeromin,et al.  Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1 , 2003, Nature Neuroscience.

[74]  L. Brodin Faculty Opinions recommendation of Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. , 2003 .

[75]  J. Spafford,et al.  Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery , 2003, Current Opinion in Neurobiology.

[76]  Scott M Thompson,et al.  Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation , 2003, Nature Neuroscience.

[77]  Maria Blatow,et al.  Ca2+ Buffer Saturation Underlies Paired Pulse Facilitation in Calbindin-D28k-Containing Terminals , 2003, Neuron.

[78]  Felix Felmy,et al.  Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation , 2003, Neuron.

[79]  W. Catterall,et al.  Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  W. Catterall,et al.  Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Smit,et al.  Calcium Channel Structural Determinants of Synaptic Transmission between Identified Invertebrate Neurons* , 2003, The Journal of Biological Chemistry.

[82]  C. Fletcher,et al.  Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  I. Bezprozvanny,et al.  Synaptic Targeting of N-Type Calcium Channels in Hippocampal Neurons , 2002, The Journal of Neuroscience.

[84]  A. Hudspeth,et al.  RIM Binding Proteins (RBPs) Couple Rab3-Interacting Molecules (RIMs) to Voltage-Gated Ca2+ Channels , 2002, Neuron.

[85]  J. Roder,et al.  Neuronal Calcium Sensor 1 and Activity-Dependent Facilitation of P/Q-Type Calcium Currents at Presynaptic Nerve Terminals , 2002, Science.

[86]  W. Catterall,et al.  Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1 , 2002, Nature Neuroscience.

[87]  K. Palczewski,et al.  Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. , 2002, Biochemical and biophysical research communications.

[88]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[89]  Huda Y. Zoghbi,et al.  Increased Expression of α1A Ca2+Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6 , 2001, The Journal of Neuroscience.

[90]  G. Schiavo,et al.  Direct Interaction of the Rab3 Effector RIM with Ca2+Channels, SNAP-25, and Synaptotagmin* , 2001, The Journal of Biological Chemistry.

[91]  Y. Kajikawa,et al.  GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. Hagler,et al.  Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. , 2001, Journal of neurophysiology.

[93]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[94]  G. Zamponi,et al.  Distinct Molecular Determinants Govern Syntaxin 1A-Mediated Inactivation and G-Protein Inhibition of N-Type Calcium Channels , 2001, The Journal of Neuroscience.

[95]  C Jodice,et al.  Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. , 2001, American journal of human genetics.

[96]  R. Burgoyne,et al.  The neuronal calcium sensor family of Ca2+-binding proteins. , 2000, The Biochemical journal.

[97]  GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[98]  R. Tsien,et al.  Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[100]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[101]  J. Hachisuka,et al.  Functional Coupling of Ca2+ Channels to Ryanodine Receptors at Presynaptic Terminals , 2000, The Journal of General Physiology.

[102]  A. Koschak,et al.  Three New Familial Hemiplegic Migraine Mutants Affect P/Q-type Ca2+ Channel Kinetics* , 2000, The Journal of Biological Chemistry.

[103]  Aaron M. Beedle,et al.  G Protein Modulation of N-type Calcium Channels Is Facilitated by Physical Interactions between Syntaxin 1A and Gβγ* , 2000, The Journal of Biological Chemistry.

[104]  R. Tsien,et al.  Nomenclature of Voltage-Gated Calcium Channels , 2000, Neuron.

[105]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[106]  Anatol C. Kreitzer,et al.  Modulation of Transmission during Trains at a Cerebellar Synapse , 2000, The Journal of Neuroscience.

[107]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[108]  D. Brody,et al.  Relief of G-Protein Inhibition of Calcium Channels and Short-Term Synaptic Facilitation in Cultured Hippocampal Neurons , 2000, The Journal of Neuroscience.

[109]  C. Verlinde,et al.  Five Members of a Novel Ca2+-binding Protein (CABP) Subfamily with Similarity to Calmodulin* , 2000, The Journal of Biological Chemistry.

[110]  A. Momiyama,et al.  Developmental Changes in Calcium Channel Types Mediating Central Synaptic Transmission , 2000, The Journal of Neuroscience.

[111]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[112]  J. Hachisuka,et al.  Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. , 2000, The Journal of general physiology.

[113]  W. Catterall,et al.  Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin , 1999, Nature Neuroscience.

[114]  K. Page,et al.  Identification of Residues in the N Terminus of α1B Critical for Inhibition of the Voltage-Dependent Calcium Channel by Gβγ , 1999, The Journal of Neuroscience.

[115]  J. Borst,et al.  The Reduced Release Probability of Releasable Vesicles during Recovery from Short-Term Synaptic Depression , 1999, Neuron.

[116]  Scott T. Wong,et al.  Ca2+/calmodulin binds to and modulates P/Q-type calcium channels , 1999, Nature.

[117]  K. Deisseroth,et al.  Calmodulin supports both inactivation and facilitation of L-type calcium channels , 1999, Nature.

[118]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[119]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[120]  K. Stauderman,et al.  Functional Consequences of Mutations in the Human α1A Calcium Channel Subunit Linked to Familial Hemiplegic Migraine , 1999, The Journal of Neuroscience.

[121]  B Sakmann,et al.  Calcium Channel Types with Distinct Presynaptic Localization Couple Differentially to Transmitter Release in Single Calyx-Type Synapses , 1999, The Journal of Neuroscience.

[122]  N. Klugbauer,et al.  Voltage-dependent calcium channels: from structure to function. , 1999, Reviews of physiology, biochemistry and pharmacology.

[123]  S. Ikeda,et al.  Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. , 1999, Advances in second messenger and phosphoprotein research.

[124]  John F. Wesseling,et al.  Augmentation Is a Potentiation of the Exocytotic Process , 1999, Neuron.

[125]  I. Forsythe,et al.  Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem , 1998, The Journal of physiology.

[126]  W. Regehr,et al.  Delayed Release of Neurotransmitter from Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[127]  M. Bennett,et al.  Calcium in sympathetic boutons of rat superior cervical ganglion during facilitation, augmentation and potentiation. , 1998, Journal of the autonomic nervous system.

[128]  Y. Mori,et al.  Differential interactions of the C-terminus and the cytoplasmic I–II loop of neuronal Ca2+ channels with G-protein α- and βγ-subunits , 1998, Neuroscience Research.

[129]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[130]  R. Kraus,et al.  Familial Hemiplegic Migraine Mutations Change α1ACa2+ Channel Kinetics* , 1998, The Journal of Biological Chemistry.

[131]  W. Catterall,et al.  Ca2+-dependent and -independent interactions of the isoforms of the alpha1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Tobi,et al.  Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel , 1997, Neuroscience Letters.

[133]  W. Catterall,et al.  Phosphorylation of the Synaptic Protein Interaction Site on N-type Calcium Channels Inhibits Interactions with SNARE Proteins , 1997, The Journal of Neuroscience.

[134]  E. Neher,et al.  Alteration of Ca2+ Dependence of Neurotransmitter Release by Disruption of Ca2+ Channel/Syntaxin Interaction , 1997, The Journal of Neuroscience.

[135]  E. F. Stanley The calcium channel and the organization of the presynaptic transmitter release face , 1997, Trends in Neurosciences.

[136]  E. Stefani,et al.  Direct interaction of Gβγ with a C-terminal Gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors , 1997 .

[137]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[138]  D. Tobi,et al.  Synaptotagmin restores kinetic properties of a syntaxin‐associated N‐type voltage sensitive calcium channel , 1997 .

[139]  B. Gähwiler,et al.  Either N- or P-type Calcium Channels Mediate GABA Release at Distinct Hippocampal Inhibitory Synapses , 1997, Neuron.

[140]  R. Zucker,et al.  Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission , 1997, Neuron.

[141]  W. Catterall,et al.  Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit , 1997 .

[142]  T. Snutch,et al.  Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit , 1997, Nature.

[143]  E. F. Stanley,et al.  Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels , 1997, Nature.

[144]  W. Catterall,et al.  Interaction of the synprint site of N-type Ca 2 1 channels with the C 2 B domain of synaptotagmin , 1997 .

[145]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[146]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[147]  Dennis E Bulman,et al.  Familial Hemiplegic Migraine and Episodic Ataxia Type-2 Are Caused by Mutations in the Ca2+ Channel Gene CACNL1A4 , 1996, Cell.

[148]  I. Forsythe,et al.  Presynaptic Calcium Current Modulation by a Metabotropic Glutamate Receptor , 1996, Science.

[149]  W. Catterall,et al.  Inhibition of Neurotransmission by Peptides Containing the Synaptic Protein Interaction Site of N-Type Ca2+ Channels , 1996, Neuron.

[150]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[151]  D. Atlas,et al.  Functional interaction of syntaxin and SNAP‐25 with voltage‐sensitive L‐ and N‐type Ca2+ channels. , 1996, The EMBO journal.

[152]  W. Catterall,et al.  Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[154]  K. Mackie,et al.  Modulation of Ca2+ channels by G-protein βγ subunits , 1996, Nature.

[155]  S. Ikeda Voltage-dependent modulation of N-type calcium channels by G-protein β γsubunits , 1996, Nature.

[156]  K. Mackie,et al.  Modulation of Ca2+ channels βγ G-protein py subunits , 1996, Nature.

[157]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[158]  R. Tsien,et al.  Functional impact of syntaxin on gating of N-type and Q-type calcium channels , 1995, Nature.

[159]  J. Hell,et al.  Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[160]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[161]  Alcino J. Silva,et al.  The α-Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity , 1995, Neuron.

[162]  R. Scheller,et al.  The Biochemistry of Neurotransmitter Secretion(*) , 1995, The Journal of Biological Chemistry.

[163]  J. Luebke,et al.  Exocytotic Ca2+ channels in mammalian central neurons , 1995, Trends in Neurosciences.

[164]  P. Chapman,et al.  The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. , 1995, Neuron.

[165]  J. Ramachandran,et al.  Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. , 1995, Annual review of pharmacology and toxicology.

[166]  Bertil Hille,et al.  Modulation of ion-channel function by G-protein-coupled receptors , 1994, Trends in Neurosciences.

[167]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[168]  W. Catterall,et al.  Identification of a syntaxin-binding site on N-Type calcium channels , 1994, Neuron.

[169]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[170]  C. Lévêque,et al.  Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. , 1994, The Journal of biological chemistry.

[171]  D W Tank,et al.  The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[172]  M. Adams,et al.  Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. , 1994, Annual review of biochemistry.

[173]  J. Buchanan,et al.  The spatial distribution of calcium signals in squid presynaptic terminals. , 1993, The Journal of physiology.

[174]  E. F. Stanley Single calcium channels and acetylcholine release at a presynaptic nerve terminal , 1993, Neuron.

[175]  K. Mikoshiba,et al.  Molecular Diversity of Voltage‐Dependent Calcium Channel , 1993, Annals of the New York Academy of Sciences.

[176]  G. Warren Bridging the gap , 1993, Nature.

[177]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[178]  J. Molgó,et al.  Facilitation and delayed release at about 0 degree C at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid. , 1993, Journal of Neurophysiology.

[179]  M. Takahashi,et al.  HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. , 1992, The Journal of biological chemistry.

[180]  J. Hell,et al.  Biochemical properties and subcellular distribution of an N-type calcium hannel α1 subunit , 1992, Neuron.

[181]  Bertil Hille,et al.  G protein-coupled mechanisms and nervous signaling , 1992, Neuron.

[182]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[183]  P. Reiner,et al.  Ca2+ channels: diversity of form and function , 1992, Current Opinion in Neurobiology.

[184]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[185]  P. Greengard,et al.  Regulation by synapsin I and Ca(2+)‐calmodulin‐dependent protein kinase II of the transmitter release in squid giant synapse. , 1991, The Journal of physiology.

[186]  I. Parnas,et al.  Effects of intra-axonal injection of Ca2+ buffers on evoked release and on facilitation in the crayfish neuromuscular junction , 1991, Neuroscience Letters.

[187]  O. Jones,et al.  Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[188]  D. T. Yue,et al.  Calcium-sensitive inactivation in the gating of single calcium channels. , 1990, Science.

[189]  M. Kennedy,et al.  Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. , 1990, Cold Spring Harbor symposia on quantitative biology.

[190]  A. Thomson Glycine modulation of the NMDA receptor/channel complex , 1989, Trends in Neurosciences.

[191]  B. Bean Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence , 1989, Nature.

[192]  R. Tsien,et al.  Multiple types of neuronal calcium channels and their selective modulation , 1988, Trends in Neurosciences.

[193]  W. Catterall,et al.  Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[194]  S. J. Smith,et al.  Calcium action in synaptic transmitter release. , 1987, Annual review of neuroscience.

[195]  T. Narahashi,et al.  Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[196]  R Llinás,et al.  Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[197]  T. Reese,et al.  Structural changes during transmitter release at synapses in the frog sympathetic ganglion , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[198]  R. Zucker,et al.  Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. , 1982, The Journal of physiology.

[199]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[200]  P. Greengard,et al.  Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Y. Yaari,et al.  Delayed release of transmitter at the frog neuromuscular junction , 1973, The Journal of physiology.

[202]  C. Stevens,et al.  The kinetics of transmitter release at the frog neuromuscular junction , 1972, The Journal of physiology.

[203]  B. Katz,et al.  Further study of the role of calcium in synaptic transmission , 1970, The Journal of physiology.

[204]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[205]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[206]  J. Hubbard Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter , 1963, The Journal of physiology.

[207]  F. Tamanini,et al.  Familial hemiplegic migraine. , 1955, The Lancet.

[208]  B. Katz,et al.  Statistical factors involved in neuromuscular facilitation and depression , 1954, The Journal of physiology.