Triangular decomposition of semi-algebraic systems

Regular chains and triangular decompositions are fundamental and well-developed tools for describing the complex solutions of polynomial systems. This paper proposes adaptations of these tools focusing on solutions of the real analogue: semi-algebraic systems. We show that any such system can be decomposed into finitely many regular semi-algebraic systems. We propose two specifications (full and lazy) of such a decomposition and present corresponding algorithms. Under some simplifying assumptions, the lazy decomposition can be computed in singly exponential time w.r.t. the number of variables. We have implemented our algorithms and present experimental results illustrating their effectiveness.

[1]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[2]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[3]  P. Philippon,et al.  Sur des hauteurs alternatives III , 1995 .

[4]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[5]  Agnes Szanto,et al.  Computation with polynomial systems , 1999 .

[6]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[7]  Thomas Sturm,et al.  REDLOG: computer algebra meets computer logic , 1997, SIGS.

[8]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[9]  Henny B. Sipma,et al.  Non-linear loop invariant generation using Gröbner bases , 2004, POPL.

[10]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[11]  Changbo Chen,et al.  Algorithms for computing triangular decompositions of polynomial systems , 2011, ISSAC '11.

[12]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.

[13]  Christopher W. Brown,et al.  On using bi-equational constraints in CAD construction , 2005, ISSAC.

[14]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[15]  Ting Zhang,et al.  Real solution isolation using interval arithmetic , 2006, Comput. Math. Appl..

[16]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[17]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[18]  Éric Schost,et al.  Bit-size estimates for triangular sets in positive dimension , 2010, J. Complex..

[19]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[20]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[21]  Christopher W. Brown Guaranteed solution formula construction , 1999, ISSAC '99.

[22]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.

[23]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[24]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[25]  M Laurent,et al.  Prion diseases and the 'protein only' hypothesis: a theoretical dynamic study. , 1996, The Biochemical journal.

[26]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[27]  Marc Moreno Maza,et al.  Computations modulo regular chains , 2009, ISSAC '09.

[28]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[29]  Wenjun Wu A zero structure theorem for polynomial-equations-solving and its applications , 1987, EUROCAL.

[30]  Ashish Tiwari,et al.  Termination of Linear Programs , 2004, CAV.

[31]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[32]  J. Calmet Computer Algebra , 1982 .

[33]  Changbo Chen,et al.  Real Root Isolation of Regular Chains , 2009, ASCM.

[34]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2010, J. Symb. Comput..

[35]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[36]  Henny B. Sipma,et al.  Linear Invariant Generation Using Non-linear Constraint Solving , 2003, CAV.

[37]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[38]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[39]  Changbo Chen,et al.  Computing with semi-algebraic sets represented by triangular decomposition , 2011, ISSAC '11.

[40]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[41]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..