X2Pd3Se4 (X = K, Rb, Cs): unexplored 2D semiconductors with high n-type transport performance

[1]  Mingkai Li,et al.  Ab initio study of two-dimensional MgAl2Se4 and MgIn2Se4 with high stability, high electron mobility, and high thermoelectric figure of merit , 2022, Journal of Alloys and Compounds.

[2]  Xingxing Jiang,et al.  Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties , 2022, Frontiers of Physics.

[3]  Mingkai Li,et al.  Ultra-Low Thermal Conductivity, High Thermoelectric Figures of Merit and High Photocatalytic Activity of Monolayer Ag(2- X )Cu X S (X = 0, 1, 2) , 2022, SSRN Electronic Journal.

[4]  Yani Chen,et al.  High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics , 2022, Science.

[5]  Gang Li,et al.  Two-dimensional V-shaped PdI2: Auxetic Semiconductor with Ultralow Lattice Thermal Conductivity and Ultrafast Alkali ion Mobility , 2022, Applied Surface Science.

[6]  Mingkai Li,et al.  Monolayer SnX (X = O, S, Se): Two-Dimensional Materials with Low Lattice Thermal Conductivities and High Thermoelectric Figures of Merit , 2022, ACS Applied Energy Materials.

[7]  Mingkai Li,et al.  Xtlo (X = K, Rb, Cs): Novel 2d Semiconductors with High Electron Mobilities, Ultra-Low Lattice Thermal Conductivities and High Thermoelectric Figures of Merit at Room Temperature , 2022, SSRN Electronic Journal.

[8]  Jiang-Jiang Ma,et al.  Monolayer SnI2: An Excellent p-Type Thermoelectric Material with Ultralow Lattice Thermal Conductivity , 2022, Materials.

[9]  Yongxin Qin,et al.  High thermoelectric performance realized through manipulating layered phonon-electron decoupling , 2022, Science.

[10]  Fang Wang,et al.  Intrinsic Ultralow Lattice Thermal Conductivity in the Full-Heusler Compound Ba2AgSb , 2022, Physical Review Applied.

[11]  Shih-Tun Chen,et al.  Monolayer XN2 (X=Ti, Zr, Hf): novel 2D materials with high stability, simultaneously high electron and hole mobilities from density functional theory , 2022, Materials Today Communications.

[12]  Mingkai Li,et al.  The elastic, electron, phonon, and vibrational properties of monolayer XO2 (X = Cr, Mo, W) from first principles calculations , 2022, Materials Today Communications.

[13]  D. Nikulin,et al.  Preparation and Thermoelectric Properties of Zinc Antimonide , 2021, Inorganic Materials.

[14]  Fujin Li,et al.  Enhanced Thermoelectric Properties of Graphene/Cu3SbSe4 Composites , 2021, Journal of Electronic Materials.

[15]  湖北大学材料科学与工程学院,et al.  Elastic constants, electronic structures and thermal conductivity of monolayer XO2(X = Ni, Pd, Pt)* , 2021, Acta Physica Sinica.

[16]  R. Saito,et al.  The Origin of Quantum Effects in Low‐Dimensional Thermoelectric Materials , 2020, Advanced Quantum Technologies.

[17]  Md. Tanver Hossain,et al.  A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS2 heterostructure , 2020, Journal of Molecular Modeling.

[18]  C. Pu,et al.  Hydrogenated PtP2 monolayer: theoretical predictions on the structure and charge carrier mobility , 2019, Journal of Materials Chemistry C.

[19]  Rongjun Zhang,et al.  Ultrahigh carrier mobilities and high thermoelectric performance at room temperature optimized by strain-engineering to two-dimensional aw-antimonene , 2019, Nano Energy.

[20]  Hongyu Yu,et al.  Significant enhancement in thermoelectric performance of Mg3Sb2 from bulk to two-dimensional mono layer , 2019, Nano Energy.

[21]  Nicola Marzari,et al.  Wannier90 as a community code: new features and applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  David J. Singh,et al.  Layered Tl2O: a model thermoelectric material , 2019, Journal of Materials Chemistry C.

[23]  R. Saito,et al.  Designing high-performance thermoelectrics in two-dimensional tetradymites , 2019, Nano Energy.

[24]  M. Kanatzidis,et al.  Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. , 2019, Journal of the American Chemical Society.

[25]  Yinchang Zhao,et al.  Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) , 2019, Scientific Reports.

[26]  G. Heymann,et al.  A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications , 2019, Journal of Materials Chemistry C.

[27]  X. Miao,et al.  KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. , 2018, Nanoscale.

[28]  Jie Ren,et al.  High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. , 2018, ACS applied materials & interfaces.

[29]  Yafei Li,et al.  Pd2Se3 monolayer: a novel two-dimensional material with excellent electronic, transport, and optical properties , 2018 .

[30]  Cheol-Hwan Park,et al.  A Rigorous Method of Calculating Exfoliation Energies from First Principles. , 2018, Nano letters.

[31]  C. Wolverton,et al.  Pd2Se3 Monolayer: A Promising Two-Dimensional Thermoelectric Material with Ultralow Lattice Thermal Conductivity and High Power Factor , 2018, Chemistry of Materials.

[32]  G. Gao,et al.  Monolayer PdSe2: A promising two-dimensional thermoelectric material , 2018, Scientific Reports.

[33]  A. V. Fedorov,et al.  Quasi-two-dimensional thermoelectricity in SnSe , 2018, 1802.08069.

[34]  S. R. S. Kumar,et al.  Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit , 2017 .

[35]  X. Miao,et al.  Stability, electronic and thermodynamic properties of aluminene from first-principles calculations , 2017 .

[36]  R. Saito,et al.  Two-dimensional InSe as a potential thermoelectric material , 2017, 1705.06688.

[37]  Yilong Ma,et al.  Theoretical insight into structure stability, elastic property and carrier mobility of monolayer arsenene under biaxial strains , 2016 .

[38]  Yang Hong,et al.  Thermal Conductivity of Monolayer MoSe2 and MoS2 , 2016 .

[39]  Qian Wang,et al.  Thermoelectric properties of single-layered SnSe sheet. , 2015, Nanoscale.

[40]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[41]  Alan J. H. McGaughey,et al.  Strongly anisotropic in-plane thermal transport in single-layer black phosphorene , 2015, Scientific Reports.

[42]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[43]  Ronggui Yang,et al.  First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene , 2014, 1404.2874.

[44]  Zhenyu Li,et al.  Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. , 2014, Journal of the American Chemical Society.

[45]  Gang Zhang,et al.  Coexistence of size-dependent and size-independent thermal conductivities in phosphorene , 2014, 1409.1967.

[46]  Jinfeng Kang,et al.  Phonon-Limited Electron Mobility in Single-Layer MoS2 , 2014 .

[47]  Yong-Wei Zhang,et al.  Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 , 2013, 1312.3729.

[48]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[49]  F. Peeters,et al.  Thermomechanical properties of graphene: valence force field model approach , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[51]  Kyoungmin Min,et al.  Mechanical properties of graphene under shear deformation , 2011 .

[52]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[53]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[54]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .