A posteriori error estimates for finite volume and mixed finite element discretizations of convection–diffusion–reaction equations
暂无分享,去创建一个
[1] R. Eymard,et al. Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .
[2] Jean E. Roberts,et al. Global estimates for mixed methods for second order elliptic equations , 1985 .
[3] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[4] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[5] Todd Arbogast,et al. Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..
[6] J. Maître,et al. Connection between finite volume and mixed finite element methods , 1996 .
[7] M. Vohralík. Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .
[8] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[9] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[10] Martin Vohralík,et al. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..
[11] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[12] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[13] Thierry Gallouët,et al. A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .
[14] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[15] M. Vohralík. On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .
[16] Martin Petzoldt,et al. A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..
[17] M. Ohlberger,et al. A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.
[18] Serge Nicaise,et al. A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..
[19] Yves Coudière,et al. CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .
[20] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[21] Clint Dawson,et al. Analysis of an Upwind-Mixed Finite Element Method for Nonlinear contaminant Transport Equations , 1998 .
[22] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[23] Serge Nicaise,et al. A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..
[24] Ivar Aavatsmark,et al. Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..