Parallel computation of the eigenvalues of symmetric Toeplitz matrices through iterative methods

This paper presents a new procedure to compute many or all of the eigenvalues and eigenvectors of symmetric Toeplitz matrices. The key to this algorithm is the use of the ''Shift-and-Invert'' technique applied with iterative methods, which allows the computation of the eigenvalues close to a given real number (the ''shift''). Given an interval containing all the desired eigenvalues, this large interval can be divided in small intervals. Then, the ''Shift-and-Invert'' version of an iterative method (Lanczos method, in this paper) can be applied to each subinterval. Since the extraction of the eigenvalues of each subinterval is independent from the other subintervals, this method is highly suitable for implementation in parallel computers. This technique has been adapted to symmetric Toeplitz problems, using the symmetry exploiting Lanczos process proposed by Voss [H. Voss, A symmetry exploiting Lanczos method for symmetric Toeplitz matrices, Numerical Algorithms 25 (2000) 377-385] and using fast solvers for the Toeplitz linear systems that must be solved in each Lanczos iteration. The method compares favourably with ScaLAPACK routines, specially when not all the spectrum must be computed.

[1]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[2]  Thomas Kailath,et al.  Displacement ranks of a matrix , 1979 .

[3]  Heinrich Voss A symmetry exploiting Lanczos method for symmetric Toeplitz matrices , 2004, Numerical Algorithms.

[4]  William F. Trench,et al.  Numerical solution of the eigenvalue problem for symmetric rationally generated Toeplitz matrices , 1988 .

[5]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[6]  José M. Badía,et al.  Parallel Algorithms to Compute the Eigenvalues and Eigenvectors Ofsymmetric Toeplitz Matrices , 1998, Parallel Algorithms Appl..

[7]  Raymond H. Chan,et al.  SINE TRANSFORM BASED PRECONDITIONERS FOR SYMMETRIC TOEPLITZ SYSTEMS , 1996 .

[8]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[9]  Zhaojun Bai,et al.  Hermitian Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.

[10]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[11]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[12]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[13]  Michael Sternberg,et al.  SIPs: Shift-and-invert parallel spectral transformations , 2007, TOMS.

[14]  F. Trench,et al.  Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices , 1989 .

[15]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[16]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[17]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .