A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.

[1]  Hwankoo Kim,et al.  w-Modules over Commutative Rings , 2016 .

[2]  Hwankoo Kim,et al.  A note on generalized Krull domains , 2014 .

[3]  Jun Zhang,et al.  INJECTIVE MODULES OVER w-NOETHERIAN RINGS, II , 2013 .

[4]  Gabriele Fusacchia Strong semistar Noetherian domains , 2013 .

[5]  Hwankoo Kim,et al.  On f-strong Mori rings , 2012 .

[6]  Fang,et al.  On ω-Linked Overrings , 2011 .

[7]  Fanggui Wang,et al.  ω-MODULES OVER COMMUTATIVE RINGS , 2011 .

[8]  Hwankoo Kim,et al.  INTEGRAL DOMAINS WHICH ARE t-LOCALLY NOETHERIAN , 2011 .

[9]  Fanggui Wang Finitely Presented Type Modules and w-Coherent Rings , 2010 .

[10]  Hwankoo Kim Module-Theoretic Characterizations of t-Linkative Domains , 2008 .

[11]  Floris Ernst,et al.  Multiplicative Ideal Theory , 2004 .

[12]  Mi Hee Park Power series rings over strong Mori domains , 2003 .

[13]  S. E. Baghdadi ON A CLASS OF PRUFER -MULTIPLICATION DOMAINS , 2002 .

[14]  R. McCasland,et al.  On w-modules over strong mori domains , 1997 .

[15]  S. Visweswaran A note on universally zero-divisor rings , 1991, Bulletin of the Australian Mathematical Society.

[16]  B. Kang Prüfer v-multiplication domains and the ring R[X]Nv , 1989 .

[17]  W. Heinzer,et al.  The Laskerian property in commutative rings , 1981 .

[18]  E. Houston,et al.  Some remarks on star-operations , 1980 .

[19]  R. Gilmer,et al.  The Laskerian property, power series rings and Noetherian spectra , 1980 .

[20]  J. Ohm,et al.  On the Noetherian-like rings of E. G. Evans , 1972 .

[21]  J. Ohm,et al.  Locally noetherian commutative rings , 1971 .

[22]  E. Evans Zero divisors in Noetherian-like rings , 1971 .

[23]  Eben Matlis,et al.  Injective modules over Noetherian rings. , 1958 .