Improved Particle Swarm Optimization Method in Inverse Design Problems

An improved particle swarm optimization algorithm is proposed and tested for two different test cases: surface fitting of a wing shape and an inverse design of an airfoil in subsonic flow. The new algorithm emphasizes the use of an indirect design prediction based on a local surrogate modeling in particle swarm optimization algorithm structure. For all the demonstration problems considered herein, remarkable reductions in the computational times have been accomplished.

[1]  Ramana V. Grandhi,et al.  Mixed-Variable Optimization Strategy Employing Multifidelity Simulation and Surrogate Models , 2010 .

[2]  Wei Chen,et al.  Multiresponse and Multistage Metamodeling Approach for Design Optimization , 2009 .

[3]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  Angel Cobo,et al.  Particle Swarm Optimization for Bézier Surface Reconstruction , 2008, ICCS.

[5]  Oktay Baysal,et al.  Vibrational genetic algorithm enhanced with fuzzy logic and neural networks , 2010 .

[6]  Florent Duchaine,et al.  Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers , 2009 .

[7]  Marco Aldinucci,et al.  Computational Science - ICCS 2008, 8th International Conference, Kraków, Poland, June 23-25, 2008, Proceedings, Part I , 2008, ICCS.

[8]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[9]  Antony Jameson,et al.  Essential Elements of Computational Algorithms for Aerodynamic Analysis and Design , 1997 .

[10]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[11]  Pierre Sagaut,et al.  A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil , 2007 .

[12]  Bryan Glaz,et al.  Multiple-Surrogate Approach to Helicopter Rotor Blade Vibration Reduction , 2009 .

[13]  Wei Shyy,et al.  Shape optimization of supersonic turbines using global approximation methods , 2002 .

[14]  Angel Cobo,et al.  Bézier Curve and Surface Fitting of 3D Point Clouds Through Genetic Algorithms, Functional Networks and Least-Squares Approximation , 2007, ICCSA.

[15]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[16]  Armando Vavalle,et al.  Iterative Response Surface Based Optimization Scheme for Transonic Airfoil Design , 2007 .

[17]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[18]  Xiaodong Li,et al.  Integrating User-Preference Swarm Algorithm and Surrogate Modeling for Airfoil Design , 2011 .

[19]  Charles W Groetsch Inverse Problems: Activities for Undergraduates , 1999 .

[20]  Régis Duvigneau,et al.  Low cost PSO using metamodels and inexact pre-evaluation: Application to aerodynamic shape design , 2009 .

[21]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[22]  Abdurrahman Hacioglu,et al.  Fast evolutionary algorithm for airfoil design via neural network , 2007 .

[23]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[24]  Marina L. Gavrilova,et al.  Computational Science and Its Applications - ICCSA 2007, International Conference, Kuala Lumpur, Malaysia, August 26-29, 2007. Proceedings, Part I , 2007, ICCSA.

[25]  Manas Khurana,et al.  Airfoil Optimisation by Swarm Algorithm with Mutation and Artificial Neural Networks , 2009 .

[26]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[27]  Yasin Volkan Pehlivanoglu,et al.  Hybrid Intelligent Optimization Methods for Engineering Problems , 2010 .

[28]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[29]  Andy J. Keane,et al.  A new hybrid updating scheme for an evolutionary search strategy using genetic algorithms and kriging , 2005 .

[30]  Xiaodong Li,et al.  Swarm heuristic for identifying preferred solutions in surrogate-based multi-objective engineering design , 2011 .

[31]  Sergey Peigin,et al.  Robust optimization of 2D airfoils driven by full Navier–Stokes computations , 2004 .

[32]  Y. Volkan Pehlivanoglu,et al.  Aerodynamic design prediction using surrogate-based modeling in genetic algorithm architecture , 2012 .