A D‐vine copula‐based model for repeated measurements extending linear mixed models with homogeneous correlation structure
暂无分享,去创建一个
[1] C. Czado,et al. Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .
[2] H. Joe. Generating random correlation matrices based on partial correlations , 2006 .
[3] Marta Nai Ruscone,et al. Modelling the Dependence in Multivariate Longitudinal Data by Pair Copula Decomposition , 2016, SMPS.
[4] Thibault Vatter,et al. Generalized Additive Models for Pair-Copula Constructions , 2016, Journal of Computational and Graphical Statistics.
[5] S. Müller,et al. Model Selection in Linear Mixed Models , 2013, 1306.2427.
[6] Claudia Czado,et al. Growing simplified vine copula trees: improving Di{\ss}mann's algorithm , 2017, 1703.05203.
[7] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[8] J. Cavanaugh,et al. Generalizing the derivation of the schwarz information criterion , 1999 .
[9] Hutan Ashrafian,et al. Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement. , 2008, The Annals of thoracic surgery.
[10] Joseph G. Ibrahim,et al. Missing data methods in longitudinal studies: a review , 2009 .
[11] Ingrid Hobæk Haff,et al. Parameter estimation for pair-copula constructions , 2013, 1303.4890.
[12] Peter J. Diggle,et al. joineR: Joint modelling of repeated measurements and time-to-event data , 2012 .
[13] P. Embrechts,et al. Dependence modeling with copulas , 2007 .
[14] George Biddell Airy,et al. On the Algebraical and Numerical Theory of Errors of Observations and the Combination of Observations , 2007 .
[15] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[16] Philip H. Ramsey. Nonparametric Statistical Methods , 1974, Technometrics.
[17] Claudia Czado,et al. D-vine copula based quantile regression , 2015, Comput. Stat. Data Anal..
[18] Claudia Czado,et al. Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas , 2015, J. Multivar. Anal..
[19] Shaojun Li,et al. Sequential Dependence Modeling Using Bayesian Theory and D-Vine Copula and Its Application on Chemical Process Risk Prediction , 2014 .
[20] Ludwig Fahrmeir,et al. Regression: Models, Methods and Applications , 2013 .
[21] Claudia Czado,et al. Analysis of Australian electricity loads using joint Bayesian inference of D-Vines with autoregressive margins , 2011 .
[22] Donald Hedeker,et al. Longitudinal Data Analysis , 2006 .
[23] Peng Shi,et al. Multilevel modeling of insurance claims using copulas , 2016 .
[24] Ulf Schepsmeier,et al. Estimating standard errors in regular vine copula models , 2013, Comput. Stat..
[25] Changyu Shen,et al. A copula model for repeated measurements with non‐ignorable non‐monotone missing outcome , 2006, Statistics in medicine.
[26] S. R. Searle,et al. Generalized, Linear, and Mixed Models , 2005 .
[27] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[28] Ana Ivelisse Avilés,et al. Linear Mixed Models for Longitudinal Data , 2001, Technometrics.
[29] Claudia Czado,et al. Examination and visualisation of the simplifying assumption for vine copulas in three dimensions , 2016, 1602.05795.
[30] Claudia Czado,et al. Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..
[31] Christian Genest,et al. Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..
[32] P. J. Lindsey,et al. Multivariate distributions with correlation matrices for nonlinear repeated measurements , 2006, Comput. Stat. Data Anal..
[33] Ethel M. Newbold,et al. Practical Applications of the Statistics of Repeated Events' Particularly to Industrial Accidents , 1927 .
[34] M. Smith,et al. Copula Modelling of Dependence in Multivariate Time Series , 2013 .
[35] H. Joe. Multivariate Models and Multivariate Dependence Concepts , 1997 .
[36] Claudia Czado,et al. Pair-Copula Constructions of Multivariate Copulas , 2010 .
[37] J. L. Myers,et al. Regression analyses of repeated measures data in cognitive research. , 1990, Journal of experimental psychology. Learning, memory, and cognition.
[38] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[39] E. Frees,et al. Heavy-tailed longitudinal data modeling using copulas , 2008 .
[40] Richard H. Jones,et al. Bayesian information criterion for longitudinal and clustered data , 2011, Statistics in medicine.
[41] J. Silvester. Determinants of block matrices , 2000, The Mathematical Gazette.
[42] Philippe Lambert,et al. A copula‐based model for multivariate non‐normal longitudinal data: analysis of a dose titration safety study on a new antidepressant , 2002, Statistics in medicine.
[43] Antero Malin,et al. Multilevel Modelling in Repeated Measures of the Quality of Finnish School Life , 2001 .
[44] S. G. Meester,et al. A parametric model for cluster correlated categorical data. , 1994, Biometrics.
[45] Fabian Spanhel,et al. The partial vine copula: A dependence measure and approximation based on the simplifying assumption , 2015, 1510.06971.
[46] Maud Delattre,et al. A note on BIC in mixed-effects models , 2014 .
[47] Lu Yang,et al. Pair Copula Constructions for Insurance Experience Rating , 2018 .
[48] J. Cavanaugh,et al. The Bayesian information criterion: background, derivation, and applications , 2012 .
[49] Fabian Spanhel,et al. Simplified vine copula models: Approximations based on the simplifying assumption , 2015, Electronic Journal of Statistics.
[50] G. Molenberghs,et al. Longitudinal data analysis , 2008 .
[51] James R. Kenyon,et al. Statistical Methods for the Analysis of Repeated Measurements , 2003, Technometrics.
[52] J Ludbrook,et al. Repeated measurements and multiple comparisons in cardiovascular research. , 1994, Cardiovascular research.
[53] Jong-Min Kim,et al. Mixture of D-vine copulas for modeling dependence , 2013, Comput. Stat. Data Anal..
[54] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[55] Farid Kianifard,et al. Models for Repeated Measurements , 2001, Technometrics.
[56] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[57] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[58] P. Diggle,et al. Analysis of Longitudinal Data , 2003 .
[59] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[60] Roger E Bumgarner,et al. Clustering gene-expression data with repeated measurements , 2003, Genome Biology.
[61] Catherine Potvin,et al. THE STATISTICAL ANALYSIS OF ECOPHYSIOLOGICAL RESPONSE CURVES OBTAINED FROM EXPERIMENTS INVOLVING REPEATED MEASURES , 1990 .
[62] Kjersti Aas,et al. On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..
[63] P. Diggle,et al. A SELECTED BIBLIOGRAPHY ON THE ANALYSIS OF REPEATED MEASUREMENTS and RELATED AREAS , 1989 .