Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity.

[1]  Joan W. Miller VEGF: From Discovery to Therapy: The Champalimaud Award Lecture , 2016, Translational vision science & technology.

[2]  Yihai Cao,et al.  Future options of anti-angiogenic cancer therapy , 2016, Chinese journal of cancer.

[3]  W. Hinrichs,et al.  Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. , 2015, Carbohydrate polymers.

[4]  Giuseppe Trapani,et al.  Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[5]  J. Frank,et al.  Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability , 2015, Neurochemistry International.

[6]  R. Zare,et al.  Celecoxib Nanoparticles for Therapeutic Angiogenesis. , 2015, ACS nano.

[7]  S. Yadav,et al.  Vitamin E-TPGS stabilized self-assembled tripeptide nanostructures for drug delivery. , 2015, Current topics in medicinal chemistry.

[8]  J. Leppänen,et al.  Systematic in vitro and in vivo study on porous silicon to improve the oral bioavailability of celecoxib. , 2015, Biomaterials.

[9]  Ling Li,et al.  Curcumin-Encapsulated Polymeric Micelles Suppress the Development of Colon Cancer In Vitro and In Vivo , 2015, Scientific Reports.

[10]  Z. Hua,et al.  Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway , 2015, Oncotarget.

[11]  M. Fernández-Gutiérrez,et al.  Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. , 2015, Biomacromolecules.

[12]  F. Izzo,et al.  Dissecting the Role of Curcumin in Tumour Growth and Angiogenesis in Mouse Model of Human Breast Cancer , 2015, BioMed research international.

[13]  A. Trapani,et al.  Inulin-D-α-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. , 2015, Biomacromolecules.

[14]  D. Mandracchia,et al.  In‐Solution Structural Considerations by 1H NMR and Solid‐State Thermal Properties of Inulin‐d‐α‐Tocopherol Succinate (INVITE) Micelles as Drug Delivery Systems for Hydrophobic Drugs , 2014 .

[15]  R. Meshram,et al.  Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. , 2014, Biochimica et biophysica acta.

[16]  G. Giammona,et al.  Amphiphilic inulin graft co-polymers as self-assembling micelles for doxorubicin delivery. , 2014, Journal of materials chemistry. B.

[17]  A. Cecchini,et al.  Systemic toxicity induced by paclitaxel in vivo is associated with the solvent cremophor EL through oxidative stress-driven mechanisms. , 2014, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[18]  D. Mandracchia,et al.  Amphiphilic inulin-D-α-tocopherol succinate (INVITE) bioconjugates for biomedical applications. , 2014, Carbohydrate polymers.

[19]  S. Rohani,et al.  Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery , 2014 .

[20]  Dejian Zhou,et al.  Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation. , 2014, Journal of biomedical nanotechnology.

[21]  D. Mandracchia,et al.  Nanostructured Polymeric Functional Micelles for Drug Delivery Applications , 2013 .

[22]  S. Jana,et al.  Remarkably stable amphiphilic random copolymer assemblies: A structure–property relationship study , 2013 .

[23]  Z. Qian,et al.  Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer , 2013, International journal of nanomedicine.

[24]  Chulhee Choi,et al.  Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ , 2012, Molecules and cells.

[25]  S. North,et al.  Inhibition of angiogenesis and the angiogenesis/invasion shift. , 2011, Biochemical Society transactions.

[26]  C. Tabolacci,et al.  Synergic effect of α-tocopherol and naringenin in transglutaminase-induced differentiation of human prostate cancer cells , 2011, Amino Acids.

[27]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[28]  Shiladitya Sengupta,et al.  Nanotechnology-mediated targeting of tumor angiogenesis , 2011, Vascular cell.

[29]  Yihai Cao,et al.  It's hard to keep all things angiogenic in one JAR! , 2011, Vascular cell.

[30]  G. Trapani,et al.  New Biodegradable Hydrogels Based on Inulin and α,β-Polyaspartylhydrazide Designed for Colonic Drug Delivery: In Vitro Release of Glutathione and Oxytocin , 2011, Journal of biomaterials science. Polymer edition.

[31]  J. D. de Bruijn,et al.  Chitosan‐based hydrogels do not induce angiogenesis , 2009, Journal of tissue engineering and regenerative medicine.

[32]  S. Suresh,et al.  Effect of Cyclodextrin Complexation of Curcumin on its Solubility and Antiangiogenic and Anti-inflammatory Activity in Rat Colitis Model , 2009, AAPS PharmSciTech.

[33]  G. Pitarresi,et al.  Controlled release of IgG by novel UV induced polysaccharide/poly(amino acid) hydrogels. , 2009, Macromolecular bioscience.

[34]  G. Pitarresi,et al.  Inulin-iron complexes: a potential treatment of iron deficiency anaemia. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[35]  A. Sckell,et al.  The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice , 2006, BMC Cancer.

[36]  A. Trapani,et al.  Frog intestinal sac: a new in vitro method for the assessment of intestinal permeability. , 2004, Journal of pharmaceutical sciences.

[37]  S. Gately,et al.  Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. , 2004, Seminars in oncology.

[38]  Sonu Bhatia,et al.  Solubility enhancement of cox-2 inhibitors using various solvent systems , 2003, AAPS PharmSciTech.

[39]  E. Crivellato,et al.  In vivo time‐course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane , 2003, Journal of anatomy.

[40]  M. Crépin,et al.  Carboxymethyl benzylamide dextran inhibits angiogenesis and growth of VEGF-overexpressing human epidermoid carcinoma xenograft in nude mice , 2003, British Journal of Cancer.

[41]  A. Trapani,et al.  Enzyme controlled release of celecoxib from inulin based nanomicelles , 2015 .

[42]  A. Trapani,et al.  Mesenchymal stromal cells loading curcumin-INVITE-micelles: a drug delivery system for neurodegenerative diseases. , 2015, Colloids and surfaces. B, Biointerfaces.

[43]  G. Pitarresi,et al.  Inulin vinyl sulfone derivative cross-linked with bis-amino PEG: new materials for biomedical applications , 2009 .

[44]  Marco Presta,et al.  The gelatin sponge–chorioallantoic membrane assay , 2006, Nature Protocols.

[45]  O. Abbasoğlu,et al.  Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention. , 2004, Cancer detection and prevention.