Control of a solar pond

Abstract Solar ponds hold the promise of providing an alternative to diesel generation of electricity at remote locations in Australia where fuel costs are high. However, to reliably generate electricity with a solar pond requires high temperatures to be maintained throughout the year; this goal had eluded the Alice Springs solar pond prior to 1989 because of double-diffusive convection within the gradient zone. This paper presents control strategies designed to provide successful high temperature operation of a solar pond year-round. The strategies, which consist mainly of manipulating upper surface layer salinity and extracting heat from the storage zone are well suited to automation. They were tested at the Alice Springs solar pond during the summer of 1989 and maintained temperatures in excess of 85°C for several months without any gradient stability problems.