The tuatara genome reveals ancient features of amniote evolution

[1]  Ryan K. Schott,et al.  Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes , 2019, Evolution; international journal of organic evolution.

[2]  Drew R. Schield,et al.  Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals , 2018, Nature Communications.

[3]  Michael J. Landis,et al.  Pulsed evolution shaped modern vertebrate body sizes , 2017, Proceedings of the National Academy of Sciences.

[4]  D. Adelson,et al.  Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies , 2017, bioRxiv.

[5]  B. Capel Vertebrate sex determination: evolutionary plasticity of a fundamental switch , 2017, Nature Reviews Genetics.

[6]  N. Valenzuela,et al.  MeDIP-seq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination , 2017, Epigenetics & Chromatin.

[7]  A. Katzourakis,et al.  Marine origin of retroviruses in the early Palaeozoic Era , 2017, Nature Communications.

[8]  D. Ray,et al.  Evolution and Diversity of Transposable Elements in Vertebrate Genomes , 2017, Genome biology and evolution.

[9]  D. Ray,et al.  Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories , 2016, Genome biology and evolution.

[10]  D. Ray,et al.  Contrasting Patterns of Evolutionary Diversification in the Olfactory Repertoires of Reptile and Bird Genomes , 2016, Genome biology and evolution.

[11]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[12]  Jianrong Wang,et al.  MIR retrotransposon sequences provide insulators to the human genome , 2015, Proceedings of the National Academy of Sciences.

[13]  J. Head Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae , 2015 .

[14]  J. Vinther,et al.  Constraints on the timescale of animal evolutionary history , 2015 .

[15]  Meganathan P. Ramakodi,et al.  Multiple Lineages of Ancient CR1 Retroposons Shaped the Early Genome Evolution of Amniotes , 2014, Genome biology and evolution.

[16]  J. Losos Tuatara: biology and conservation of a venerable survivor , 2014 .

[17]  A. Cree Tuatara: Biology and Conservation of a Venerable Survivor , 2014 .

[18]  V. Gladyshev,et al.  Selenoproteins: molecular pathways and physiological roles. , 2014, Physiological reviews.

[19]  C. Anderson,et al.  Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) , 2013, BMC Evolutionary Biology.

[20]  P. Biggs,et al.  De novo sequence assembly and characterisation of a partial transcriptome for an evolutionarily distinct reptile, the tuatara (Sphenodon punctatus) , 2012, BMC Genomics.

[21]  B. Nilius,et al.  The transient receptor potential family of ion channels , 2011, Genome Biology.

[22]  Cédric Feschotte,et al.  Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. , 2010, Trends in ecology & evolution.

[23]  Ziheng Yang,et al.  The Timetree of Life , 2010 .

[24]  F. Allendorf,et al.  Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia) , 2010, Conservation Genetics.

[25]  D. O’Meally,et al.  The First Cytogenetic Map of the Tuatara, Sphenodon punctatus , 2010, Cytogenetic and Genome Research.

[26]  S. Evans,et al.  A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[27]  C. Millar,et al.  Molecular and morphological evolution in tuatara are decoupled , 2009 .

[28]  F. Allendorf,et al.  The evolutionary rate of tuatara revisited. , 2009, Trends in genetics : TIG.

[29]  Michael R Kearney,et al.  Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? , 2008, Proceedings of the Royal Society B: Biological Sciences.

[30]  Miriam K. Konkel,et al.  Genome analysis of the platypus reveals unique signatures of evolution , 2008, Nature.

[31]  C. Millar,et al.  Rapid molecular evolution in a living fossil. , 2008, Trends in genetics : TIG.

[32]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[33]  G. Chambers,et al.  Genetic variation in island populations of tuatara (Sphenodon spp) inferred from microsatellite markers , 2007, Conservation Genetics.

[34]  V. Meyer-Rochow,et al.  Photoreceptor cell types in the retina of the tuatara (Sphenodon punctatus) have cone characteristics. , 2005, Micron.

[35]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[36]  Mark Pagel,et al.  Molecular Phylogenies Link Rates of Evolution and Speciation , 2003, Science.

[37]  D. Labuda,et al.  CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Cooper,et al.  The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  C. Daugherty,et al.  Neglected taxonomy and continuing extinctions of tuatara (Sphenodon) , 1990, Nature.