Understanding and Supporting Cross-Device Web Search for Exploratory Tasks with Mobile Touch Interactions

Mobile devices enable people to look for information at the moment when their information needs are triggered. While experiencing complex information needs that require multiple search sessions, users may utilize desktop computers to fulfill information needs started on mobile devices. Under the context of mobile-to-desktop web search, this article analyzes users’ behavioral patterns and compares them to the patterns in desktop-to-desktop web search. Then, we examine several approaches of using Mobile Touch Interactions (MTIs) to infer relevant content so that such content can be used for supporting subsequent search queries on desktop computers. The experimental data used in this article was collected through a user study involving 24 participants and six properly designed cross-device web search tasks. Our experimental results show that (1) users’ mobile-to-desktop search behaviors do significantly differ from desktop-to-desktop search behaviors in terms of information exploration, sense-making and repeated behaviors. (2) MTIs can be employed to predict the relevance of click-through documents, but applying document-level relevant content based on the predicted relevance does not improve search performance. (3) MTIs can also be used to identify the relevant text chunks at a fine-grained subdocument level. Such relevant information can achieve better search performance than the document-level relevant content. In addition, such subdocument relevant information can be combined with document-level relevance to further improve the search performance. However, the effectiveness of these methods relies on the sufficiency of click-through documents. (4) MTIs can also be obtained from the Search Engine Results Pages (SERPs). The subdocument feedbacks inferred from this set of MTIs even outperform the MTI-based subdocument feedback from the click-through documents.

[1]  Wei Chu,et al.  Modeling the impact of short- and long-term behavior on search personalization , 2012, SIGIR '12.

[2]  Wei Chu,et al.  Enhancing personalized search by mining and modeling task behavior , 2013, WWW.

[3]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[4]  Grace Hui Yang,et al.  Utilizing query change for session search , 2013, SIGIR.

[5]  Milad Shokouhi,et al.  Fighting search engine amnesia: reranking repeated results , 2013, SIGIR.

[6]  Ryen W. White,et al.  Lessons from the journey: a query log analysis of within-session learning , 2014, WSDM.

[7]  Ben Carterette,et al.  Overview of the TREC 2011 Session Track , 2011, TREC.

[8]  Mark S. Ackerman,et al.  The perfect search engine is not enough: a study of orienteering behavior in directed search , 2004, CHI.

[9]  ChengXiang Zhai,et al.  Positional language models for information retrieval , 2009, SIGIR.

[10]  Timothy Sohn,et al.  Myngle: unifying and filtering web content for unplanned access between multiple personal devices , 2011, UbiComp '11.

[11]  Wei-Ying Ma,et al.  Improving pseudo-relevance feedback in web information retrieval using web page segmentation , 2003, WWW '03.

[12]  Yang Song,et al.  Exploring and exploiting user search behavior on mobile and tablet devices to improve search relevance , 2013, WWW '13.

[13]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[14]  Ryen W. White,et al.  Characterizing and supporting cross-device search tasks , 2013, WSDM.

[15]  Adam Herout,et al.  On-Screen Marker Fields for Reliable Screen-to-Screen Task Migration , 2013, SouthCHI.

[16]  Antti Oulasvirta,et al.  Mobile kits and laptop trays: managing multiple devices in mobile information work , 2007, CHI.

[17]  Eugene Agichtein,et al.  Mining touch interaction data on mobile devices to predict web search result relevance , 2013, SIGIR.

[18]  Paul Johns,et al.  Exploring Cross-Device Web Use on PCs and Mobile Devices , 2009, INTERACT.

[19]  J. Teugels,et al.  Encyclopedia of actuarial science , 2004 .

[20]  Amanda Spink,et al.  A user-centered approach to evaluating human interaction with Web search engines: an exploratory study , 2002, Inf. Process. Manag..

[21]  Ed H. Chi,et al.  An elaborated model of social search , 2010, Inf. Process. Manag..

[22]  W. Bruce Croft,et al.  Passage retrieval based on language models , 2002, CIKM '02.

[23]  Jaime Teevan,et al.  Understanding and predicting personal navigation , 2011, WSDM '11.

[24]  David Dearman,et al.  It's on my other computer!: computing with multiple devices , 2008, CHI.

[25]  James Allan,et al.  Improving passage ranking with user behavior information , 2013, CIKM.

[26]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[27]  Andreas Dengel,et al.  Segment-level display time as implicit feedback: a comparison to eye tracking , 2009, SIGIR.

[28]  Brian P. Bailey,et al.  Investigating the effectiveness of mental workload as a predictor of opportune moments for interruption , 2005, CHI Extended Abstracts.

[29]  Diane Kelly,et al.  Methods for Evaluating Interactive Information Retrieval Systems with Users , 2009, Found. Trends Inf. Retr..

[30]  Peter Fankhauser,et al.  Boilerplate detection using shallow text features , 2010, WSDM '10.

[31]  Eugene Agichtein,et al.  Find it if you can: a game for modeling different types of web search success using interaction data , 2011, SIGIR.

[32]  Farzin Maghoul,et al.  Deciphering mobile search patterns: a study of Yahoo! mobile search queries , 2008, WWW.

[33]  Andreas Dengel,et al.  Reading and estimating gaze on smart phones , 2012, ETRA '12.

[34]  Ryen W. White,et al.  Modeling and analysis of cross-session search tasks , 2011, SIGIR.

[35]  Ryen W. White,et al.  Search, interrupted: understanding and predicting search task continuation , 2012, SIGIR '12.

[36]  Pia Borlund,et al.  Experimental components for the evaluation of interactive information retrieval systems , 2000, J. Documentation.

[37]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[38]  Wei Chu,et al.  Learning to extract cross-session search tasks , 2013, WWW.

[39]  Jaime Teevan,et al.  Information re-retrieval: repeat queries in Yahoo's logs , 2007, SIGIR.

[40]  Shuguang Han,et al.  PITT at TREC 2011 Session Track , 2011, TREC.

[41]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[42]  Ryen W. White,et al.  No clicks, no problem: using cursor movements to understand and improve search , 2011, CHI.

[43]  Paul N. Bennett,et al.  Toward whole-session relevance: exploring intrinsic diversity in web search , 2013, SIGIR.

[44]  Eugene Agichtein,et al.  Beyond dwell time: estimating document relevance from cursor movements and other post-click searcher behavior , 2012, WWW.

[45]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[46]  Andreas Dengel,et al.  Query expansion using gaze-based feedback on the subdocument level , 2008, SIGIR '08.

[47]  John C. Tang,et al.  Mobile taskflow in context: a screenshot study of smartphone usage , 2010, CHI.

[48]  Shuguang Han,et al.  A Study of Mobile Information Exploration with Multi-touch Interactions , 2014, SBP.

[49]  Ryen W. White,et al.  Probabilistic models for personalizing web search , 2012, WSDM '12.

[50]  Shuguang Han,et al.  On Duplicate Results in a Search Session , 2012, TREC.

[51]  Ryen W. White,et al.  Predicting short-term interests using activity-based search context , 2010, CIKM.

[52]  Andreas Dieberger,et al.  Supporting social navigation on the World Wide Web , 1997, Int. J. Hum. Comput. Stud..

[53]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[54]  Lois M. L. Delcambre,et al.  Discounted Cumulated Gain Based Evaluation of Multiple-Query IR Sessions , 2008, ECIR.

[55]  ChengXiang Zhai,et al.  Positional relevance model for pseudo-relevance feedback , 2010, SIGIR.

[56]  Shumeet Baluja,et al.  Deciphering Trends in Mobile Search , 2007, Computer.

[57]  Shuguang Han,et al.  Modeling search processes using hidden states in collaborative exploratory web search , 2014, CSCW.

[58]  Ryen W. White,et al.  Improving searcher models using mouse cursor activity , 2012, SIGIR '12.

[59]  Eugene Agichtein,et al.  Detecting success in mobile search from interaction , 2011, SIGIR '11.

[60]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[61]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.