Parallel Computing for Geocomputational Modeling

In the past decade, the emergence of cyberinfrastructure has rendered high-performance computing resources and parallel technologies increasingly open to domain-specific science discovery. The capability of these high-performance computing resources and associated parallel technologies has greatly stimulated researchers to utilize them for domain-specific problem-solving that requires considerable computational support. The objective of this paper is to investigate in detail the utility of parallel computing in geocomputational modeling. We discuss fundamentals in parallel computing and relevant technologies. To best leverage diverse high-performance computing resources often requires well-crafted parallel computing strategies or algorithms. We review the use of parallel computing for geocomputational modeling by focusing on four aspects: spatial statistics, spatial optimization, spatial simulation, and cartography and geovisualization. We design a case study of a spatial agent-based model to show how parallel computing can be exploited to empower advanced geocomputational modeling. Results demonstrate that the evolving parallel computing provides solid support for computationally intensive geocomputational modeling.

[1]  Jianting Zhang,et al.  Towards personal high-performance geospatial computing (HPC-G): perspectives and a case study , 2010, HPDGIS '10.

[2]  Alan T. Murray,et al.  The Influence of Data Aggregation on the Stability of p-Median Location Model Solutions , 2010 .

[3]  G. Heuvelink,et al.  Using Linear Integer Programming for Multi-Site Land-Use Allocation , 2003 .

[4]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[5]  Yuemin Ding,et al.  Spatial Strategies for Parallel Spatial Modelling , 1996, Int. J. Geogr. Inf. Sci..

[6]  Alexey Voinov,et al.  Landscape simulation modeling : a spatially explicit, dynamic approach , 2003 .

[7]  Michael J. Widener,et al.  Developing a parallel computational implementation of AMOEBA , 2012, Int. J. Geogr. Inf. Sci..

[8]  Wenwu Tang,et al.  Massively parallel spatial point pattern analysis: Ripley’s K function accelerated using graphics processing units , 2015, Int. J. Geogr. Inf. Sci..

[9]  Marc P. Armstrong,et al.  Parallel processing of spatial statistics , 1994 .

[10]  M. Janssen,et al.  Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review , 2003 .

[11]  Keith C. Clarke,et al.  A general-purpose parallel raster processing programming library test application using a geographic cellular automata model , 2010, Int. J. Geogr. Inf. Sci..

[12]  Kenneth A. Hawick,et al.  Kriging Interpolation on High-Performance Computers , 1998, HPCN Europe.

[13]  Kai Nagel,et al.  Parallel implementation of the TRANSIMS micro-simulation , 2001, Parallel Comput..

[14]  Allen J. Scott,et al.  Combinatorial programming, spatial analysis and planning , 1971 .

[15]  Ana Cortés,et al.  Parallel ordinary kriging interpolation incorporating automatic variogram fitting , 2011, Comput. Geosci..

[16]  Daniel Atkins,et al.  Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure , 2003 .

[17]  Lin Yang,et al.  An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping , 2011, Int. J. Geogr. Inf. Sci..

[18]  Mark Gahegan,et al.  Guest Editorial: What is Geocomputation? , 1999, Trans. GIS.

[19]  Richard L. Church,et al.  Exploratory spatial optimization in site search : a neighborhood operator approach , 2000 .

[20]  Lizhe Wang,et al.  Large scale distributed visualization on computational Grids: A review , 2011, Comput. Electr. Eng..

[21]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[22]  Shaowen Wang,et al.  A parallel agent-based model of land use opinions , 2011 .

[23]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[24]  Shaowen Wang,et al.  HPABM: A Hierarchical Parallel Simulation Framework for Spatially‐explicit Agent‐based Models , 2009, Trans. GIS.

[25]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[26]  Steven F. Railsback,et al.  Individual-based modeling and ecology , 2005 .

[27]  Sergio J. Rey,et al.  Parallel optimal choropleth map classification in PySAL , 2013, Int. J. Geogr. Inf. Sci..

[28]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[29]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[30]  Stan Openshaw,et al.  High Performance Computing and the Art of Parallel Programming: An Introduction for Geographers, Social Scientists and Engineers , 2000 .

[31]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[32]  Graham R. Brookes,et al.  A parallel implementation of the douglas‐peucker line simplification algorithm , 1991, Softw. Pract. Exp..

[33]  Richard L. Church,et al.  The Regionally Constrained p-Median Problem , 2010 .

[34]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[35]  Mark Gahegan,et al.  Geospatial Cyberinfrastructure: Past, present and future , 2010, Comput. Environ. Urban Syst..

[36]  Naphtali Rishe,et al.  A large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling , 2012 .

[37]  James E. Mower Automated Feature and Name Placement on Parallel Computers , 1993 .

[38]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[39]  Herbert Dawid,et al.  EURACE: A massively parallel agent-based model of the European economy , 2008, Appl. Math. Comput..

[40]  Michael W. Berry,et al.  Parallel Models of Animal Migration in Northern Yellowstone National Park , 1995, Int. J. High Perform. Comput. Appl..

[41]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[42]  Michael Batty,et al.  Cities and Complexity: Understanding Cities Through Cellular Automata, Agent-Based Models and Fractals , 2005 .

[43]  J. Banks,et al.  Handbook of Simulation , 1998 .

[44]  Xiaohu Zhang,et al.  Parallel cellular automata for large-scale urban simulation using load-balancing techniques , 2010, Int. J. Geogr. Inf. Sci..

[45]  Robert Costanza,et al.  Landscape Simulation Modeling , 2004, Modeling Dynamic Systems.

[46]  Michael Allen,et al.  Parallel programming: techniques and applications using networked workstations and parallel computers , 1998 .

[47]  Michael Bevers,et al.  Spatial Optimization for Managed Ecosystems , 1998 .

[48]  Marc P. Armstrong,et al.  Using Linda to compute spatial autocorrelation in parallel , 1996 .

[49]  James E. Mower Developing Parallel Procedures for Line Simplification , 1996, Int. J. Geogr. Inf. Sci..

[50]  Michael W. Berry,et al.  A Parallel Fish Landscape Model for Ecosystem Modeling , 2006, Simul..

[51]  Marc P. Armstrong,et al.  Massively Parallel Processing of Spatial Statistics , 1995, Int. J. Geogr. Inf. Sci..

[52]  Terry A. Slocum Thematic Cartography and Visualization , 1998 .

[53]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[54]  P. Torrens,et al.  Geosimulation: Automata-based modeling of urban phenomena , 2004 .

[55]  Shaowen Wang,et al.  Parallelizing MCMC for Bayesian spatiotemporal geostatistical models , 2007, Stat. Comput..

[56]  William Spataro,et al.  Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows , 2006, Comput. Geosci..

[57]  Ian T. Foster,et al.  Designing and building parallel programs - concepts and tools for parallel software engineering , 1995 .

[58]  Shaowen Wang,et al.  A quadtree approach to domain decomposition for spatial interpolation in Grid computing environments , 2003, Parallel Comput..

[59]  Joshua M. Epstein Agent-based computational models and generative social science , 1999 .

[60]  Li Zheng,et al.  PGO: A parallel computing platform for global optimization based on genetic algorithm , 2007, Comput. Geosci..

[61]  Wenwu Tang,et al.  Parallel construction of large circular cartograms using graphics processing units , 2013, Int. J. Geogr. Inf. Sci..

[62]  Alexandre Sorokine,et al.  Implementation of a parallel high-performance visualization technique in GRASS GIS , 2007, Comput. Geosci..

[63]  Alan T. Murray,et al.  Spatial Optimization in Geography , 2012 .

[64]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[65]  Shaowen Wang,et al.  A theoretical approach to the use of cyberinfrastructure in geographical analysis , 2009, Int. J. Geogr. Inf. Sci..

[66]  Thomas Maxwell,et al.  Spatial ecosystem modelling using parallel processors , 1991 .

[67]  Jack Dongarra,et al.  Sourcebook of parallel computing , 2003 .

[68]  David A. Bennett,et al.  Using Genetic Algorithms to Create Multicriteria Class Intervals for Choropleth Maps , 2003 .

[69]  R. Fletcher Practical Methods of Optimization , 1988 .

[70]  Tangpei Cheng,et al.  Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU , 2013, Comput. Geosci..

[71]  Shaowen Wang A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and Spatial Analysis , 2010 .

[72]  Julián M. Ortiz,et al.  Parallel implementation of simulated annealing to reproduce multiple-point statistics , 2011, Comput. Geosci..

[73]  Michael F. Goodchild,et al.  A parallel computing approach to fast geostatistical areal interpolation , 2011, Int. J. Geogr. Inf. Sci..

[74]  William L. Garrison,et al.  SPATIAL STRUCTURE OF THE ECONOMY: I , 1959 .

[75]  Wenwu Tang,et al.  Parallelization of ensemble neural networks for spatial land-use modeling , 2012, LBSN '12.

[76]  David A. Bennett,et al.  Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units , 2011 .

[77]  Paul A. Longley,et al.  Geocomputation: a primer , 1998 .

[78]  Marc P. Armstrong,et al.  Geography and Computational Science , 2000 .

[79]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[80]  Michael F. Goodchild,et al.  Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? , 2011, Int. J. Digit. Earth.

[81]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[82]  Mark Gahegan,et al.  Geovisualization for knowledge construction and decision support , 2004, IEEE Computer Graphics and Applications.

[83]  J. Jones,et al.  A parallel implementation of kriging with a trend , 1997 .

[84]  Guillaume Deffuant,et al.  Meet, discuss, and segregate! , 2002, Complex..

[85]  Francisco F. Rivera,et al.  High performance genetic algorithm for land use planning , 2013, Comput. Environ. Urban Syst..

[86]  Michael W. Berry,et al.  Parallel individual-based modeling of Everglades deer ecology , 1997 .

[87]  A. Getis,et al.  Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial Clusters , 2006 .

[88]  Ludwig von Bertalanffy,et al.  The History and State of General Systems Theory , 1972 .