An overview of the CRONE approach in system analysis, modeling and identification, observation and control

Abstract The aim of the paper is to present the fundamental definitions connected to fractional differentiation and to present an overview of the CRONE approach in the fields of system analysis, modeling and identification, observation and control. Industrial applications of fractional differentiation are also described in this paper. Some recent developments are also presented.

[1]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[2]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[3]  Peter C. Young,et al.  Parameter Estimation for Continuous Time Models - A Survey , 1979 .

[4]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[7]  H. Levi,et al.  Using fractional differentiation for the modeling of 1/f/sup 1/ noise application to discrete-time noise sources in VHDL-AMS , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[8]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[9]  S. Venugopalan,et al.  Impedance parameters and the state-of charge. I. Nickel-cadmium battery , 1979 .

[10]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..

[11]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[12]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[13]  J. Sabatier,et al.  Crone control of a nonlinear hydraulic actuator , 2002 .

[14]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[15]  A. Oustaloup,et al.  Robust Control of LTI Square Mimo Plants Using Two Crone Control Design Approaches , 2000 .

[16]  J. Battaglia,et al.  Solving an inverse heat conduction problem using a non-integer identified model , 2001 .

[17]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[18]  A. Oustaloup Représentation et identification par modèle non entier , 2005 .

[19]  A. Oustaloup,et al.  Complex-fractional systems: Modal decomposition and stability condition , 2001, 2001 European Control Conference (ECC).

[20]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .

[21]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[22]  A. Oustaloup,et al.  Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).

[23]  J. Sabatier,et al.  LMI Tools for Stability Analysis of Fractional Systems , 2005 .

[24]  Rolf Isermann,et al.  Comparison of Some Parameter Estimation Methods for Continuous-time Models , 1988 .

[25]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[26]  Y. Chen,et al.  Fractional Order Disturbance Observer for Robust Vibration Suppression , 2004 .

[27]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[28]  Auke Jan Ijspeert,et al.  FRACTIONAL MULTI-MODELS OF THE GASTROCNEMIUS FROG MUSCLE , 2006 .

[29]  Ioan Doré Landau,et al.  A Flexible Transmission System as a Benchmark for Robust Digital Control , 1995, Eur. J. Control.

[30]  Alain Oustaloup,et al.  H2 Norm of Fractional Differential Systems , 2003 .

[31]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[32]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[33]  A. Oustaloup La dérivation non entière , 1995 .

[34]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[35]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[36]  D. Matignon,et al.  Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems , 1996 .

[37]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .