Global Dynamics for the Two-dimensional Stochastic Nonlinear Wave Equations

We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (1) By introducing a hybrid argument, combining the $I$-method in the stochastic setting with a Gronwall-type argument, we first prove global well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument yields a double exponential growth bound on the Sobolev norm of a solution. (2) We then study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case. In particular, by applying Bourgain’s invariant measure argument, we prove almost sure global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs measure and invariance of the Gibbs measure.

[1]  N. Tzvetkov,et al.  Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces , 2022, Annales de l'Institut Fourier.

[2]  N. Tzvetkov,et al.  Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation , 2022, 2206.00728.

[3]  Tadahiro Oh,et al.  Stochastic quantization of the $\Phi^3_3$-model , 2021 .

[4]  Invariant Gibbs dynamics for the dynamical sine-Gordon model , 2020, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  Tadahiro Oh,et al.  Almost conservation laws for stochastic nonlinear Schrödinger equations , 2019, Journal of Evolution Equations.

[6]  Tadahiro Oh,et al.  On the Parabolic and Hyperbolic Liouville Equations , 2019, Communications in Mathematical Physics.

[7]  Tadahiro Oh,et al.  Comparing the stochastic nonlinear wave and heat equations: a case study , 2019, Electronic Journal of Probability.

[8]  Bjoern Bringmann Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity II: Dynamics , 2020, Journal of the European Mathematical Society.

[9]  Focusing $\Phi^4_3$-model with a Hartree-type nonlinearity , 2020, 2009.03251.

[10]  H. Weber,et al.  Space‐Time Localisation for the Dynamic Φ34 Model , 2020, Communications on Pure and Applied Mathematics.

[11]  Philippe Sosoe,et al.  On the two-dimensional hyperbolic stochastic sine-Gordon equation , 2019, Stochastics and Partial Differential Equations: Analysis and Computations.

[12]  Tadahiro Oh,et al.  A remark on triviality for the two-dimensional stochastic nonlinear wave equation , 2019, Stochastic Processes and their Applications.

[13]  A. Deya On a non-linear 2D fractional wave equation , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[14]  Tadahiro Oh,et al.  Invariant Gibbs measures for the 2-$d$ defocusing nonlinear wave equations , 2017, Annales de la Faculté des sciences de Toulouse : Mathématiques.

[15]  Justin Forlano Almost sure global well posedness for the BBM equation with infinite \begin{document}$ L^{2} $\end{document} initial data , 2020 .

[16]  L. Tolomeo Global well posedness of the two-dimensional stochastic nonlinear wave equation on an unbounded domain , 2019, The Annals of Probability.

[17]  Probabilistic local well-posedness of the cubic nonlinear wave equation in negative Sobolev spaces , 2019, 1904.06792.

[18]  N. Tzvetkov,et al.  Stochastic nonlinear wave dynamics on compact surfaces , 2019, Annales Henri Lebesgue.

[19]  Justin Forlano Almost sure global well posedness for the BBM equation with infinite $L^{2}$ initial data , 2019 .

[20]  M. Hofmanová,et al.  Global Solutions to Elliptic and Parabolic $${\Phi^4}$$Φ4 Models in Euclidean Space , 2018, Communications in Mathematical Physics.

[21]  A. Deya A nonlinear wave equation with fractional perturbation , 2017, The Annals of Probability.

[22]  M. Gubinelli,et al.  Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity , 2018, Journal of the European Mathematical Society.

[23]  L. Tolomeo Unique Ergodicity for a Class of Stochastic Hyperbolic Equations with Additive Space-Time White Noise , 2018, 1811.06294.

[24]  Space-time localisation for the dynamic $\Phi^4_3$ model , 2018, 1811.05764.

[25]  M. Gubinelli,et al.  Renormalization of the two-dimensional stochastic nonlinear wave equations , 2017, Transactions of the American Mathematical Society.

[26]  Tadahiro Oh,et al.  A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations , 2015, Stochastics and Partial Differential Equations: Analysis and Computations.

[27]  M. Hofmanová,et al.  PR ] 3 0 A pr 2 01 8 Global solutions to elliptic and parabolic Φ 4 models in Euclidean space , 2018 .

[28]  H. Weber,et al.  The Dynamic $${\Phi^4_3}$$Φ34 Model Comes Down from Infinity , 2016, 1601.01234.

[29]  H. Weber,et al.  THE DYNAMIC Φ 43 MODEL COMES DOWN FROM INFINITY , 2017 .

[30]  Á. Bényi,et al.  On the Probabilistic Cauchy Theory of the Cubic Nonlinear Schrödinger Equation on Rd, d≥3 , 2014, 1405.7327.

[31]  Tadahiro Oh,et al.  Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on $\mathbb{R}^3$ , 2015, 1502.00575.

[32]  H. Weber,et al.  Global well-posedness of the dynamic $\Phi^4$ model in the plane , 2015, 1501.06191.

[33]  Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on ^3 , 2015 .

[34]  H. Weber,et al.  GLOBAL WELL-POSEDNESS OF THE DYNAMIC 4 MODEL IN THE PLANE , 2015 .

[35]  T. Roy On the interpolation with the potential bound for global solutions of the defocusing cubic wave equation on T2 , 2014, 1411.6141.

[36]  Oana Pocovnicu Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb{R}^d$, $d=4$ and $5$ , 2014, 1406.1782.

[37]  N. Tzvetkov,et al.  Probabilistic well-posedness for the cubic wave equation , 2011, 1103.2222.

[38]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .

[39]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths by Peter K. Friz , 2010 .

[40]  N. Tzvetkov,et al.  Gibbs measure for the periodic derivative nonlinear Schrödinger equation , 2010, 1001.4269.

[41]  Nicolas Victoir,et al.  Multidimensional Stochastic Processes as Rough Paths: Variation and Hölder spaces on free groups , 2010 .

[42]  J. Colliander,et al.  Almost sure well-posedness of the cubic nonlinear Schr\ , 2009, 0904.2820.

[43]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[44]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[45]  Giuseppe Da Prato,et al.  Wick powers in stochastic PDEs: an introduction , 2007 .

[46]  N. Tzvetkov Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation , 2006, math/0610626.

[47]  H. Kuo Introduction to stochastic integration , 2006 .

[48]  I. Shigekawa,et al.  Stochastic analysis , 2004 .

[49]  G. Prato,et al.  Strong solutions to the stochastic quantization equations , 2003 .

[50]  A. Debussche,et al.  The Stochastic Nonlinear Schrödinger Equation in H 1 , 2003 .

[51]  Terence Tao,et al.  Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .

[52]  H. Takaoka,et al.  Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.

[53]  H. Takaoka,et al.  Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001 .

[54]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[55]  Jean Bourgain,et al.  Invariant measures for the2D-defocusing nonlinear Schrödinger equation , 1996 .

[56]  S. Albeverio,et al.  Trivial solutions for a non-lineartwo-space dimensional wave equation perturbed by space-time white noise , 1996 .

[57]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[58]  H. McKean Statistical mechanics of nonlinear wave equations (4): Cubic Schrödinger , 1995 .

[59]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[60]  H. McKean Erratum: "Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger" , 1995 .

[61]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[62]  H. McKean,et al.  Statistical mechanics of nonlinear wave equations , 1994 .

[63]  Tosio Kato,et al.  On nonlinear Schrödinger equations , 1987 .

[64]  K. Shigemoto,et al.  Canonical Stochastic Quantization , 1985 .

[65]  J. Glimm,et al.  Quantum Physics: A Functional Integral Point of View , 1981 .

[66]  M. Eisen,et al.  Probability and its applications , 1975 .

[67]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[68]  S. Zienau Quantum Physics , 1969, Nature.