W-Algebras Extending Affine gl(1|1)

It was recently shown that gl^(1|1) admits an infinite family of simple current extensions. Here, these findings are reviewed and explicit free field realisations of the extended algebras are constructed. The leading contributions to the operator product algebra are then calculated. Among these extensions, one finds four infinite families that seem to contain, as subalgebras, copies of the W^(2)_N algebras of Feigin and Semikhatov at various levels and central charges +/- 1.

[1]  T. Creutzig,et al.  A commutant realization of W^(2)_n at critical level , 2011, 1109.4065.

[2]  David Ridout,et al.  Relating the Archetypes of Logarithmic Conformal Field Theory , 2011, 1107.2135.

[3]  David Ridout Fusion in fractional level slˆ(2)-theories with k=-1/2 > , 2010, 1012.2905.

[4]  T. Creutzig,et al.  From world-sheet supersymmetry to super target spaces , 2010, 1006.5874.

[5]  David Ridout and the triplet model , 2010, Nuclear Physics B.

[6]  David Ridout ŝl(2)−1/2 AND THE TRIPLET MODEL , 2010 .

[7]  T. Creutzig Branes in Supergroups , 2009, 0908.1816.

[8]  David Ridout,et al.  On staggered indecomposable Virasoro modules , 2009, 0905.0108.

[9]  T. Creutzig,et al.  The GL(1|1)-symplectic fermion correspondence , 2008, 0812.2835.

[10]  T. Creutzig,et al.  Boundary correlators in supergroup WZNW models , 2008, 0804.3469.

[11]  David Ridout sl(2)_{-1/2}: A case study , 2008, 0810.3532.

[12]  T. Quella,et al.  Branes in the GL(1|1) WZNW-Model , 2007, 0708.0583.

[13]  T. Quella,et al.  Free fermion resolution of supergroup WZNW models , 2007, 0706.0744.

[14]  P. Mathieu,et al.  The extended algebra of the minimal models , 2007, hep-th/0701250.

[15]  P. Mathieu,et al.  The extended algebra of the SU(2) Wess–Zumino–Witten models , 2006, hep-th/0609226.

[16]  T. Quella,et al.  Representation theory of sl(2|1) , 2005, hep-th/0504234.

[17]  H. Saleur,et al.  The GL(1|1) WZW-model: From supergeometry to logarithmic CFT , 2005, hep-th/0510032.

[18]  B. Feigin,et al.  $W^{(2)}_n$ algebras , 2004, math/0401164.

[19]  H. Kausch,et al.  Symplectic Fermions , 2000, hep-th/0003029.

[20]  A. Ludwig,et al.  gl(N|N) Super-current algebras for disordered Dirac fermions in two dimensions , 1999, cond-mat/9909143.

[21]  M. Gaberdiel,et al.  A rational logarithmic conformal field theory , 1996, hep-th/9606050.

[22]  M. Gaberdiel,et al.  INDECOMPOSABLE FUSION PRODUCTS , 1996, hep-th/9604026.

[23]  W. Nahm Quasi-rational fusion products , 1994, hep-th/9402039.

[24]  L. Rozansky,et al.  S- and T-matrices for the super U (1,1) WZW model application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial , 1992, hep-th/9203069.

[25]  H. Saleur,et al.  Quantum field theory for the multi-variable Alexander-Conway polynomial , 1992 .

[26]  M. Bershadsky Conformal field theories via Hamiltonian reduction , 1991 .

[27]  A. Polyakov GAUGE TRANSFORMATIONS AND DIFFEOMORPHISMS , 1990 .