W-Algebras Extending Affine gl(1|1)
暂无分享,去创建一个
[1] T. Creutzig,et al. A commutant realization of W^(2)_n at critical level , 2011, 1109.4065.
[2] David Ridout,et al. Relating the Archetypes of Logarithmic Conformal Field Theory , 2011, 1107.2135.
[3] David Ridout. Fusion in fractional level slˆ(2)-theories with k=-1/2 > , 2010, 1012.2905.
[4] T. Creutzig,et al. From world-sheet supersymmetry to super target spaces , 2010, 1006.5874.
[5] David Ridout. and the triplet model , 2010, Nuclear Physics B.
[6] David Ridout. ŝl(2)−1/2 AND THE TRIPLET MODEL , 2010 .
[7] T. Creutzig. Branes in Supergroups , 2009, 0908.1816.
[8] David Ridout,et al. On staggered indecomposable Virasoro modules , 2009, 0905.0108.
[9] T. Creutzig,et al. The GL(1|1)-symplectic fermion correspondence , 2008, 0812.2835.
[10] T. Creutzig,et al. Boundary correlators in supergroup WZNW models , 2008, 0804.3469.
[11] David Ridout. sl(2)_{-1/2}: A case study , 2008, 0810.3532.
[12] T. Quella,et al. Branes in the GL(1|1) WZNW-Model , 2007, 0708.0583.
[13] T. Quella,et al. Free fermion resolution of supergroup WZNW models , 2007, 0706.0744.
[14] P. Mathieu,et al. The extended algebra of the minimal models , 2007, hep-th/0701250.
[15] P. Mathieu,et al. The extended algebra of the SU(2) Wess–Zumino–Witten models , 2006, hep-th/0609226.
[16] T. Quella,et al. Representation theory of sl(2|1) , 2005, hep-th/0504234.
[17] H. Saleur,et al. The GL(1|1) WZW-model: From supergeometry to logarithmic CFT , 2005, hep-th/0510032.
[18] B. Feigin,et al. $W^{(2)}_n$ algebras , 2004, math/0401164.
[19] H. Kausch,et al. Symplectic Fermions , 2000, hep-th/0003029.
[20] A. Ludwig,et al. gl(N|N) Super-current algebras for disordered Dirac fermions in two dimensions , 1999, cond-mat/9909143.
[21] M. Gaberdiel,et al. A rational logarithmic conformal field theory , 1996, hep-th/9606050.
[22] M. Gaberdiel,et al. INDECOMPOSABLE FUSION PRODUCTS , 1996, hep-th/9604026.
[23] W. Nahm. Quasi-rational fusion products , 1994, hep-th/9402039.
[24] L. Rozansky,et al. S- and T-matrices for the super U (1,1) WZW model application to surgery and 3-manifolds invariants based on the Alexander-Conway polynomial , 1992, hep-th/9203069.
[25] H. Saleur,et al. Quantum field theory for the multi-variable Alexander-Conway polynomial , 1992 .
[26] M. Bershadsky. Conformal field theories via Hamiltonian reduction , 1991 .
[27] A. Polyakov. GAUGE TRANSFORMATIONS AND DIFFEOMORPHISMS , 1990 .