More on the operator-state map in nonrelativistic CFTs

We propose an algebraic construction of the operator-state correspondence in nonrelativistic conformal field theories by explicitly constructing an automorphism of the Schrödinger algebra relating generators in different frames. It is shown that the construction follows closely that of relativistic conformal field theories.

[1]  D. Simmons-Duffin,et al.  Counting conformal correlators , 2016, 1612.08987.

[2]  D. Simmons-Duffin,et al.  The conformal bootstrap , 2016, Nature Physics.

[3]  S. Rychkov EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions , 2016, 1601.05000.

[4]  A. Monin,et al.  Gauging nonrelativistic field theories using the coset construction , 2016, 1601.03046.

[5]  A. Monin,et al.  Weyl vs. conformal , 2015, 1510.08042.

[6]  Walter D. Goldberger,et al.  OPE convergence in non-relativistic conformal field theories , 2014, 1412.8507.

[7]  Siavash Golkar,et al.  Operator product expansion and conservation laws in non-relativistic conformal field theories , 2014, 1408.3629.

[8]  A. Monin,et al.  General coordinate invariance in quantum many-body systems , 2014, 1407.7730.

[9]  F. Riva,et al.  (Re-)inventing the relativistic wheel: gravity, cosets, and spinning objects , 2014, 1405.7384.

[10]  D. Son Newton-Cartan Geometry and the Quantum Hall Effect , 2013, 1306.0638.

[11]  D. Pappadopulo,et al.  OPE Convergence in Conformal Field Theory , 2012, 1208.6449.

[12]  P. Maslanka,et al.  Nonrelativistic conformal groups and their dynamical realizations , 2012, 1204.5950.

[13]  A. Vichi A New Method to Explore Conformal Field Theories in Any Dimension , 2011 .

[14]  R. Gopakumar,et al.  Galilean Conformal Algebras and AdS/CFT , 2009, 0902.1385.

[15]  D. Son Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry , 2008, 0804.3972.

[16]  J. Maldacena,et al.  Comments on operators with large spin , 2007, 0708.0672.

[17]  Y. Nishida,et al.  Nonrelativistic conformal field theories , 2007, 0706.3746.

[18]  D. Son,et al.  General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas , 2005, cond-mat/0509786.

[19]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[20]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[21]  J. Moffat Infinite Component Fields as a Basis for a Finite Quantum Field Theory , 1988 .

[22]  A. Barut,et al.  Quantum theory of infinite component fields , 1979 .

[23]  G. Mack Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory , 1977 .

[24]  M. Lüscher Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions , 1976 .

[25]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[26]  R. Gatto,et al.  Tensor representations of conformal algebra and conformally covariant operator product expansion , 1973 .

[27]  M. Carmeli Infinite‐Dimensional Representations of the Lorentz Group , 1970 .

[28]  A. Salam,et al.  Finite-component field representations of the conformal group , 1969 .

[29]  H. Nicolai REPRESENTATIONS OF SUPERSYMMETRY IN ANTI-DE SITTER SPACE , 1984 .

[30]  R. Gatto,et al.  Manifestly conformal covariant operator-product expansion , 1971 .

[31]  I. Todorov,et al.  Majorana representations of the Lorentz group and infinite component fields , 1968 .