A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient.

BACKGROUND & AIMS Imatinib, a tyrosine kinase inhibitor of BCR-ABL, KIT, and platelet-derived growth factor receptor, is used in patients with chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors (GIST). Primary and acquired resistance to the drug can occur in both diseases. Molecular mechanisms have been reported in CML and GIST for primary resistance, whereas extensive studies on the mechanisms responsible for secondary resistance have been almost exclusively reported for CML. METHODS In a patient with advanced GIST undergoing imatinib therapy, an isolated progressing peritoneal mass was excised, along with 2 still-responding lesions. Complementary DNA and genomic DNA were analyzed by sequencing for c-Kit gene mutations. KIT receptor expression and phosphorylation status were assessed by immunoprecipitation and Western blot. Transient-transfection experiments were performed with mutagenized KIT constructs, and their activation status was assessed. RESULTS In addition to an exon 11 mutation, shared among all of the analyzed lesions, a novel point mutation in c-Kit exon 14 resulting in T670I substitution was found only in the progressing lesion, which harbored a phosphorylated receptor, as opposed to the finding of an inactive receptor in responding lesions. Functional analyses showed that KIT/T670I is insensitive to imatinib and that T670I mutation, introduced in a receptor responding to imatinib, subverted its sensitivity to the drug. CONCLUSIONS This new mutation was confined to the progressing lesion; the resulting amino acidic substitution, T670I, affecting the ATP/imatinib pocket of KIT, makes it insensitive to the drug. Interestingly, this substitution is a homologue to the T315I mutation already reported in CML, where it is responsible for acquired resistance to imatinib.

[1]  T. Jacks,et al.  STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications , 2001, Oncogene.

[2]  A. D. Van den Abbeele,et al.  Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. , 2002, The New England journal of medicine.

[3]  C. J. Chen,et al.  KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. , 2001, Cancer research.

[4]  M. Pierotti,et al.  The Gly571arg mutation, associated with the autonomic and sensory disorder congenital insensitivity to pain with anhidrosis, causes the inactivation of the NTRK1/nerve growth factor receptor , 2000, Journal of cellular physiology.

[5]  Samuel Singer,et al.  PDGFRA Activating Mutations in Gastrointestinal Stromal Tumors , 2003, Science.

[6]  Peter Marynen,et al.  A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. , 2003, The New England journal of medicine.

[7]  T. Hunter,et al.  The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. , 1988, Science.

[8]  J. Eary,et al.  Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  B. Druker,et al.  Analysis of the Structural Basis of Specificity of Inhibition of the Abl Kinase by STI571* , 2002, The Journal of Biological Chemistry.

[10]  M. Pierotti,et al.  c-KIT and c-KIT ligand (SCF) in synovial sarcoma (SS): an mRNA expression analysis in 23 cases , 2001, British Journal of Cancer.

[11]  K. Walsh The Protein Kinase Family , 1987 .

[12]  B. Druker,et al.  Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  C. Antonescu,et al.  Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans , 2002, International journal of cancer.

[14]  B. Druker,et al.  STI571: a paradigm of new agents for cancer therapeutics. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  H. Serve,et al.  A Single Amino Acid Exchange Inverts Susceptibility of Related Receptor Tyrosine Kinases for the ATP Site Inhibitor STI-571* 210 , 2003, The Journal of Biological Chemistry.

[16]  G. Daley,et al.  Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL , 2003, Cell.

[17]  G. Demetri,et al.  Management of malignant gastrointestinal stromal tumours. , 2002, The Lancet. Oncology.

[18]  P. Rosée,et al.  Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia: a translational perspective , 2002, Leukemia.

[19]  C. Fletcher,et al.  Immunohistochemical staining for KIT (CD117) in soft tissue sarcomas is very limited in distribution. , 2002, American journal of clinical pathology.

[20]  J. Lasota,et al.  Gastrointestinal stromal tumors – definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis , 2000, Virchows Archiv.