Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star’s radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected ‘mixed modes’. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

[1]  P. Ledoux,et al.  The Nonradial Oscillations of Gaseous Stars and the Problem of Beta Canis Majoris. , 1951 .

[2]  A. Sweigart,et al.  Meridional circulation and CNO anomalies in red giant stars , 1979 .

[3]  J. Harvey,et al.  Internal rotation of the Sun , 1984, Nature.

[4]  J. Zahn Circulation and turbulence in rotating stars , 1992 .

[5]  S. J. Wheeler,et al.  Slow rotation of the Sun's interior , 1995, Nature.

[6]  Douglas Gough,et al.  Prospects for Measuring Differential Rotation in White Dwarfs through Asteroseismology , 1999 .

[7]  W. Chaplin,et al.  Rotation of the solar core from BiSON and LOWL frequency observations , 1999 .

[8]  M. Pinsonneault,et al.  ROTATION OF HORIZONTAL-BRANCH STARS IN GLOBULAR CLUSTERS , 1999, astro-ph/9911024.

[9]  D. O. Gough,et al.  Oscillations of α UMa and other red giants , 2001, astro-ph/0108337.

[10]  C. Aerts,et al.  Asteroseismology of HD 129929: Core Overshooting and Nonrigid Rotation , 2003, Science.

[11]  G. Handler,et al.  Asteroseismology of the β Cephei star ν Eridani: interpretation and applications of the oscillation spectrum , 2004 .

[12]  JØrgen Christensen-Dalsgaard Physics of solar-like oscillations , 2004 .

[13]  Fundamental stellar parameters , 2004, astro-ph/0412519.

[14]  Antonio Eff-Darwich,et al.  Tracking Solar Gravity Modes: The Dynamics of the Solar Core , 2007, Science.

[15]  S. Mathur,et al.  Sensitivity of helioseismic gravity modes to the dynamics of the solar core , 2008, 0803.3966.

[16]  A. Miglio,et al.  Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants , 2009, 0906.3951.

[17]  Magali Deleuil,et al.  Non-radial oscillation modes with long lifetimes in giant stars , 2009, Nature.

[18]  G. Meynet,et al.  Effects of rotation on the evolution and asteroseismic properties of red giants , 2009, 0911.5307.

[19]  A. Miglio,et al.  SEISMIC DIAGNOSTICS OF RED GIANTS: FIRST COMPARISON WITH STELLAR MODELS , 2010, 1009.1754.

[20]  Y. Elsworth,et al.  The universal red-giant oscillation pattern; an automated determination with CoRoT data , 2010, 1011.1928.

[21]  J. M. Matthews,et al.  Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters , 2010, 1010.4589.

[22]  J. De Ridder,et al.  SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER , 2010, 1001.0229.

[23]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[24]  C. Aerts,et al.  Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star , 2011, Science.

[25]  R. Gilliland,et al.  Preparation of Kepler lightcurves for asteroseismic analyses , 2011, 1103.0382.

[26]  J. Ridder,et al.  An automated determination with CoRoT data , 2011 .