Flexible Density Tempering Approaches for State Space Models with an Application to Factor Stochastic Volatility Models
暂无分享,去创建一个
[1] David Gunawan,et al. A flexible particle Markov chain Monte Carlo method , 2014, Stat. Comput..
[2] R. Kohn,et al. Efficiently Combining Pseudo Marginal and Particle Gibbs Sampling , 2018, 1804.04359.
[3] A. Doucet,et al. The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[4] Gregor Kastner,et al. Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models , 2016, 1602.08154.
[5] Alexandros Beskos,et al. On the convergence of adaptive sequential Monte Carlo methods , 2013, The Annals of Applied Probability.
[6] J. Rosenthal,et al. On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.
[7] Robert Kohn,et al. On general sampling schemes for Particle Markov chain Monte Carlo methods , 2014 .
[8] Robert Kohn,et al. Flexible Particle Markov chain Monte Carlo methods with an application to a factor stochastic volatility model , 2014, 1401.1667.
[9] Fredrik Lindsten,et al. Particle gibbs with ancestor sampling , 2014, J. Mach. Learn. Res..
[10] Jin-Chuan Duan,et al. Density-Tempered Marginalized Sequential Monte Carlo Samplers , 2013 .
[11] Rodney W. Strachan,et al. Invariant Inference and Efficient Computation in the Static Factor Model , 2013 .
[12] Sumeetpal S. Singh,et al. On particle Gibbs sampling , 2013, 1304.1887.
[13] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[14] F. Lindsten,et al. On the use of backward simulation in particle Markov chain Monte Carlo methods , 2011, 1110.2873.
[15] Tobias Rydén,et al. Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling , 2011, IEEE Transactions on Signal Processing.
[16] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[17] P. H. Garthwaite,et al. Adaptive optimal scaling of Metropolis–Hastings algorithms using the Robbins–Monro process , 2010, 1006.3690.
[18] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[19] Mark J. Jensen,et al. Bayesian Semiparametric Stochastic Volatility Modeling , 2008 .
[20] Tony O’Hagan. Bayes factors , 2006 .
[21] N. Shephard,et al. Analysis of high dimensional multivariate stochastic volatility models , 2006 .
[22] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[23] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[24] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[25] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[26] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[27] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[28] J. Geweke,et al. Measuring the pricing error of the arbitrage pricing theory , 1996 .
[29] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .