Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station

Heartbeat oscillations in complex plasmas with a broad range of fundamental frequencies are observed and studied. The experiments are performed with monodisperse microparticles of different diameters in argon as well as in neon plasmas. The oscillation frequency increases with increasing rf power and neutral gas pressure. At the lower frequencies, oscillations are strongly nonlinear. The microparticle pulsations, the variation of the electrical discharge parameters and the spatially resolved changes in the plasma glow are proven to be strongly correlated. Heartbeat oscillation dynamics is associated with global confinement modes.

[1]  A. Piel,et al.  Spatial frequency clustering in nonlinear dust-density waves. , 2010, Physical review letters.

[2]  M. Bonitz,et al.  Complex plasmas: a laboratory for strong correlations , 2010 .

[3]  T. Reiter,et al.  Auto-oscillations in complex plasmas , 2010 .

[4]  L. Boufendi,et al.  Instabilities during the growth of dust successive generations in silane-based plasmas , 2008 .

[5]  Yves Tessier,et al.  Mixed-mode oscillations in complex-plasma instabilities. , 2008, Physical review letters.

[6]  A. Piel,et al.  Existence and vanishing of the breathing mode in strongly correlated finite systems. , 2008, Physical review letters.

[7]  G. Morfill,et al.  Complex plasma laboratory PK-3 Plus on the International Space Station , 2008 .

[8]  L. Boufendi,et al.  Successive generations of dust in complex plasmas: a cyclic phenomenon in the void region. , 2008, Physical review letters.

[9]  G. Morfill,et al.  Highly resolved self-excited density waves in a complex plasma. , 2007, Physical review letters.

[10]  L. Couëdel,et al.  Self-excited void instability in dusty plasmas: plasma and dust cloud dynamics during the heartbeat instability , 2007 .

[11]  A. Piel,et al.  Langmuir probe system for dusty plasmas under microgravity. , 2007, The Review of scientific instruments.

[12]  L. Couëdel,et al.  Low frequency instabilities during dust particle growth in a radio-frequency plasma , 2006 .

[13]  A. Piel,et al.  Langmuir probe diagnostics in the IMPF device and comparison with simulations and tracer particle experiments , 2006 .

[14]  S. Vladimirov,et al.  Size of dust voids as a function of the power input in dusty plasma , 2006 .

[15]  G. Morfill,et al.  The 'classical tunnelling effect'—observations and theory , 2006 .

[16]  T. E. Sheridan Center-of-mass and breathing oscillations in small complex plasma disks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S. Vladimirov,et al.  Stability of dust voids , 2005 .

[18]  G. Morfill,et al.  Force field inside the void in complex plasmas under microgravity conditions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  T. H. Zerguini,et al.  Nonlinear dust phase-space vortices (holes) in charge-varying dusty plasmas , 2005 .

[20]  S. Vladimirov,et al.  Theory of dust and dust-void structures in the presence of the ion diffusion. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  L. Boufendi,et al.  Experimental investigations of void dynamics in a dusty discharge , 2004 .

[22]  W. Theisen,et al.  Breathing-mode resonance of a complex plasma disk , 2004 .

[23]  S. Hu,et al.  Nonlinear theory of void formation in colloidal plasmas. , 2003 .

[24]  W. Goedheer,et al.  Modeling of voids in colloidal plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Goree,et al.  Theory of collision-dominated dust voids in plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  V. Tsytovich Evolution of voids in dusty plasmas , 2001 .

[27]  Vladimirov,et al.  Dust-acoustic wave instabilities in collisional plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  J. Goree,et al.  Condensed Plasmas under Microgravity , 1999 .

[29]  J. Goree,et al.  Theory of dust voids in plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  J. Goree,et al.  Instabilities in a dusty plasma with ion drag and ionization , 1999 .

[31]  R. Merlino,et al.  Laboratory studies of waves and instabilities in dusty plasmas , 1998 .

[32]  R. Merlino,et al.  Current-driven dust-acoustic instability in a collisional plasma , 1996 .

[33]  J. Goree,et al.  Experimental observation of very low-frequency macroscopic modes in a dusty plasma , 1996 .

[34]  T. Matsoukas,et al.  Particle charging in low‐pressure plasmas , 1995 .

[35]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[36]  A. Bouchoule,et al.  High concentration effects in dusty plasmas , 1994 .

[37]  M. Rosenberg Ion- and dust-acoustic instabilities in dusty plasmas , 1993 .

[38]  H. Ikezi Coulomb solid of small particles in plasmas , 1986 .

[39]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .