On the improbability of reaching Byzantine agreements

It is well known that for the Byzantine Generals Problem, no deterministic protocol can exist for an <italic>n</italic>-processor system if the number <italic>t</italic> of faulty processors is allowed to be as large as <italic>n</italic>/3. In this paper we investigate the maximum achievable agreement probability Β<subscrpt><italic>n,t</italic></subscrpt> in a model in which the faulty processors can be as devious and powerful as possible. We also discuss a restricted model with Β<subscrpt><italic>n,t</italic></subscrpt> denoting the corresponding maximum achievable probability. We will prove that: (i) for <italic>n</italic> = 3, <italic>t</italic> = 1 (the first nontrivial case), Β<subscrpt>3,1</subscrpt> = (√5 - 1)/2 (the reciprocal of the golden ratio); (ii) for all ε with 0 < ε < 1, if <italic>t</italic>/<italic>n</italic> > 1 - log (1 -ε)<supscrpt>1/2</supscrpt>/ log (1 - (1 -ε)<supscrpt>1/2</supscrpt>) then Β<supscrpt><italic>t</italic></supscrpt><subscrpt><italic>n,t</italic></subscrpt> < ε

[1]  Nancy A. Lynch,et al.  Reaching approximate agreement in the presence of faults , 1986, JACM.

[2]  Michael O. Rabin,et al.  Randomized byzantine generals , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  Gabriel Bracha,et al.  An asynchronous [(n - 1)/3]-resilient consensus protocol , 1984, PODC '84.

[4]  Hagit Attiya,et al.  Achievable cases in an asynchronous environment , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[5]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1983, PODS '83.

[6]  Andrei Z. Broder,et al.  Flipping coins in many pockets (Byzantine agreement on uniformly random values) , 1984, FOCS.

[7]  Danny Dolev,et al.  Polynomial algorithms for multiple processor agreement , 1982, STOC '82.

[8]  Nancy A. Lynch,et al.  Consensus in the presence of partial synchrony , 1988, JACM.

[9]  David B. Shmoys,et al.  Simple constant-time consensus protocols in realistic failure models , 1989, JACM.

[10]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[11]  Nancy A. Lynch,et al.  A Lower Bound for the Time to Assure Interactive Consistency , 1982, Inf. Process. Lett..

[12]  Nancy A. Lynch,et al.  An Efficient Algorithm for Byzantine Agreement without Authentication , 1982, Inf. Control..

[13]  Michael Ben-Or,et al.  Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols , 1983, PODC '83.

[14]  Fred B. Schneider,et al.  Inexact agreement: accuracy, precision, and graceful degradation , 1985, PODC '85.

[15]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[17]  Gabriel Bracha,et al.  An O(log n) expected rounds randomized byzantine generals protocol , 1987, JACM.

[18]  Brian A. Coan,et al.  A Simple and Efficient Randomized Byzantine Agreement Algorithm , 1985, IEEE Transactions on Software Engineering.