Efficient high-resolution RF pulse design applied to simultaneous multi-slice excitation.

RF pulse design via optimal control is typically based on gradient and quasi-Newton approaches and therefore suffers from slow convergence. We present a flexible and highly efficient method that uses exact second-order information within a globally convergent trust-region CG-Newton method to yield an improved convergence rate. The approach is applied to the design of RF pulses for single- and simultaneous multi-slice (SMS) excitation and validated using phantom and in vivo experiments on a 3T scanner using a modified gradient echo sequence.

[1]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[2]  M H Buonocore,et al.  RF pulse design using the inverse scattering transform , 1993, Magnetic resonance in medicine.

[3]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[4]  Kawin Setsompop,et al.  Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. , 2013, Journal of magnetic resonance.

[5]  G. Mckinnon,et al.  Nonuniform and multidimensional Shinnar‐Le Roux RF pulse design method , 2012, Magnetic resonance in medicine.

[6]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[7]  David G Norris,et al.  Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation , 2011, Magnetic resonance in medicine.

[8]  J. Shen Delayed-focus pulses optimized using simulated annealing. , 2001, Journal of magnetic resonance.

[9]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[10]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[11]  Zhi-Pei Liang,et al.  Design of multidimensional Shinnar–Le Roux radiofrequency pulses , 2015, Magnetic resonance in medicine.

[12]  A. O. Rodríguez,et al.  Principles of magnetic resonance imaging , 2004 .

[13]  Kawin Setsompop,et al.  Simultaneous multislice excitation by parallel transmission , 2014, Magnetic resonance in medicine.

[14]  S. Müller,et al.  Multifrequency selective rf pulses for multislice MR imaging , 1988, Magnetic resonance in medicine.

[15]  Steen Moeller,et al.  Simultaneous multislice multiband parallel radiofrequency excitation with independent slice‐specific transmit B1 homogenization , 2013, Magnetic resonance in medicine.

[16]  Murat Aksoy,et al.  kT-PINS RF Pulses for Low-Power Field Inhomogeneity-Compensated Multislice Excitation , 2012 .

[17]  Yasser M. Kadah,et al.  Optimal design of RF pulses with arbitrary profiles in magnetic resonance imaging , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  M. S. Vinding,et al.  Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. , 2012, The Journal of chemical physics.

[19]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[20]  G. Mckinnon,et al.  Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach , 2008, Magnetic resonance in medicine.

[21]  Kawin Setsompop,et al.  Interslice leakage artifact reduction technique for simultaneous multislice acquisitions , 2014, Magnetic resonance in medicine.

[22]  Alfio Borzì,et al.  SKRYN: A fast semismooth-Krylov-Newton method for controlling Ising spin systems , 2015, Comput. Phys. Commun..

[23]  Michael Lustig,et al.  Root‐flipped multiband refocusing pulses , 2016, Magnetic resonance in medicine.

[24]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[25]  Alfio Borzì,et al.  Newton Methods for the Optimal Control of Closed Quantum Spin Systems , 2015, SIAM J. Sci. Comput..

[26]  John Pauly,et al.  Designing adiabatic radio frequency pulses using the Shinnar–Le Roux algorithm , 2010, Magnetic resonance in medicine.

[27]  Jeffrey A. Fessler,et al.  Fast Large-Tip-Angle Multidimensional and Parallel RF Pulse Design in MRI , 2009, IEEE Transactions on Medical Imaging.

[28]  Mathieu Claeys,et al.  Geometric and Numerical Methods in the Contrast Imaging Problem in Nuclear Magnetic Resonance , 2015 .

[29]  Zhi Wang,et al.  The second order adjoint analysis: Theory and applications , 1992 .

[30]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[31]  Johnpauly A k-Space Analysis of Small-Tip-Angle Excitation , 2012 .

[32]  Kawin Setsompop,et al.  Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate , 2015, Magnetic resonance in medicine.

[33]  Burkhard Luy,et al.  New strategies for designing robust universal rotation pulses: application to broadband refocusing at low power. , 2012, Journal of magnetic resonance.

[34]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[35]  P Xu,et al.  Delayed‐focus pulses for magnetic resonance imaging: An evolutionary approach , 1991, Magnetic resonance in medicine.

[36]  K. Uğurbil,et al.  Multiband accelerated spin‐echo echo planar imaging with reduced peak RF power using time‐shifted RF pulses , 2013, Magnetic resonance in medicine.

[37]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[38]  Manoj Nimbalkar,et al.  Optimal control design of band-selective excitation pulses that accommodate relaxation and RF inhomogeneity. , 2011, Journal of magnetic resonance.

[39]  Kuan J. Lee General parameter relations for the Shinnar-Le Roux pulse design algorithm. , 2007, Journal of magnetic resonance.

[40]  Marcello Guarini,et al.  Chebyshev series for designing RF pulses employing an optimal control approach , 2004, IEEE Transactions on Medical Imaging.

[41]  Ray Freeman,et al.  Use of neural networks to design shaped radiofrequency pulses , 1990 .

[42]  D. Larkman,et al.  Use of multicoil arrays for separation of signal from multiple slices simultaneously excited , 2001, Journal of magnetic resonance imaging : JMRI.

[43]  Himanshu Bhat,et al.  RARE/turbo spin echo imaging with simultaneous multislice Wave‐CAIPI , 2015, Magnetic resonance in medicine.

[44]  Kawin Setsompop,et al.  A low power radiofrequency pulse for simultaneous multislice excitation and refocusing , 2014, Magnetic resonance in medicine.

[45]  F. Santosa,et al.  Computation of the Hessian for least-squares solutions of inverse problems of reflection seismology , 1988 .

[46]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[47]  D. Sugny,et al.  Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging , 2012, Scientific Reports.

[48]  Robin M Heidemann,et al.  Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) , 2006, Magnetic resonance in medicine.

[49]  A. Macovski,et al.  Variable-rate selective excitation , 1988 .

[50]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[51]  L. de Rochefort,et al.  Velocity‐selective RF pulses in MRI , 2006, Magnetic resonance in medicine.

[52]  Christopher Kumar Anand,et al.  Designing optimal universal pulses using second-order, large-scale, non-linear optimization. , 2012, Journal of magnetic resonance.